1 Proof Practice

(a) Prove that \(\forall n \in \mathbb{N}, \) if \(n \) is odd, then \(n^2 + 1 \) is even. (Recall that \(n \) is odd if \(n = 2k + 1 \) for some natural number \(k \).)

(b) Prove that \(\forall x, y \in \mathbb{R}, \min(x, y) = (x + y - |x - y|)/2. \) (Recall, that the definition of absolute value for a real number \(z \), is
\[
|z| = \begin{cases}
 z, & z \geq 0 \\
 -z, & z < 0
\end{cases}
\]

(c) Suppose \(A \subseteq B. \) Prove \(\mathcal{P}(A) \subseteq \mathcal{P}(B). \) (Recall that \(A' \in \mathcal{P}(A) \) if and only if \(A' \subseteq A \).)

2 Preserving Set Operations

For a function \(f \), define the image of a set \(X \) to be the set \(f(X) = \{ y \mid y = f(x) \text{ for some } x \in X \} \). Define the inverse image or preimage of a set \(Y \) to be the set \(f^{-1}(Y) = \{ x \mid f(x) \in Y \} \). Prove the following statements, in which \(A \) and \(B \) are sets. By doing so, you will show that inverse images preserve set operations, but images typically do not.

Recall: For sets \(X \) and \(Y, X = Y \) if and only if \(X \subseteq Y \) and \(Y \subseteq X \). To prove that \(X \subseteq Y \), it is sufficient to show that \((\forall x) ((x \in X) \implies (x \in Y)). \)

(a) \(f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B). \)
(b) \(f(A \cup B) = f(A) \cup f(B) \).

3 Fermat’s Contradiction

Prove that \(2^{1/n} \) is not rational for any integer \(n \geq 3 \). (Hint: Use Fermat’s Last Theorem. It states that there exists no positive integers \(a, b, c \) s.t. \(a^n + b^n = c^n \) for \(n \geq 3 \).)

4 Pebbles

Suppose you have a rectangular array of pebbles, where each pebble is either red or blue. Suppose that for every way of choosing one pebble from each column, there exists a red pebble among the chosen ones. Prove that there must exist an all-red column.