1. Set Operations

- \(\mathbb{R} \), the set of real numbers
- \(\mathbb{Q} \), the set of rational numbers: \(\{a/b : a, b \in \mathbb{Z} \land b \neq 0\} \)
- \(\mathbb{Z} \), the set of integers: \(\{\ldots, -2, -1, 0, 1, 2, \ldots\} \)
- \(\mathbb{N} \), the set of natural numbers: \(\{0, 1, 2, \ldots\} \)

(a) Given a set \(A = \{1, 2, 3, 4\} \), what is \(\mathcal{P}(A) \) (Power Set)?

(b) Given a generic set \(B \), how do you describe \(\mathcal{P}(B) \) using set comprehension notation? (Set Comprehension is \(\{x | x \in A\} \).)

(c) What is \(\mathbb{R} \cap \mathcal{P}(A) \)?

(d) What is \(\mathbb{R} \cap \mathbb{Z} \)?

(e) What is \(\mathbb{N} \cup \mathbb{Q} \)?

(f) What kind of numbers are in \(\mathbb{R} \setminus \mathbb{Q} \)?

(g) If \(S \subseteq T \), what is \(S \setminus T \)?
2 Bijections

Consider the function

\[f(x) = \begin{cases}
 x, & \text{if } x \geq 1; \\
 x^2, & \text{if } -1 \leq x < 1; \\
 2x + 3, & \text{if } x < -1.
\]

(a) If the domain and range of \(f \) are \(\mathbb{N} \), is \(f \) injective (one-to-one), surjective (onto), bijective?

(b) If the domain and range of \(f \) are \(\mathbb{Z} \), is \(f \) injective (one-to-one), surjective (onto), bijective?

(c) If the domain and range of \(f \) are \(\mathbb{R} \), is \(f \) injective (one-to-one), surjective (onto), bijective?

3 Unions and Intersections

For each of the following, decide if the expression is "Always Countable", "Always Uncountable", "Sometimes Countable, Sometimes Uncountable".

For the "Always" cases, prove your claim. For the "Sometimes" case, provide two examples – one where the expression is countable, and one where the expression is uncountable.

(a) \(A \cap B \), where \(A \) is countable, and \(B \) is uncountable

(b) \(A \cup B \), where \(A \) is countable, and \(B \) is uncountable

(c) \(\bigcap_{i \in A} S_i \) where \(A \) is a countable set of indices and each \(S_i \) is an uncountable set.