CS 70 Discrete Mathematics and Probability Theory Summer 2017 Lu, Moulos, and Tang

DIS 2A

1 Stable Marriage

Consider the set of men $M = \{1, 2, 3\}$ and the set of women $W = \{A, B, C\}$ with the following preferences.

Men	Women		
1	A	В	С
2	В	A	С
3	Α	В	С

Women	Men		
A	2	1	3
В	1	2	3
С	1	2	3

Run the male propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work)

2 Quantitative Stable Marriage Algorithm

Once you have practiced the basic algorithm, let's quantify stable marriage problem a little bit. Here we define the following notation: on day j, let $P_j(M)$ be the rank of the woman that man M proposes to (where the first woman on his list has rank 1 and the last has rank n). Also, let $R_j(W)$ be the total number of men that woman W has rejected up through day j-1 (i.e. not including the proposals on day j). Please answer the following questions using the notation above.

- (a) Prove or disprove the following claim: $\sum_M P_j(M) \sum_W R_j(W)$ is independent of j. If it is true, please also give the value of $\sum_M P_j(M) \sum_W R_j(W)$. The notation, \sum_M and \sum_W , simply means that we are summing over all men and all women.
- (b) Prove or disprove the following claim: one of the **men or women** must be matched to someone who is ranked in the top half of their preference list. You may assume that *n* is even.

3 Be a Judge

For each of the following statements about the traditional stable marriage algorithm with men proposing, indicate whether the statement is True or False and justify your answer with a short 2-3 line explanation:

- (a) There is a set of preferences for n men and n women, such that in a stable marriage algorithm execution every man ends up with his least preferred woman.
- (b) In a stable marriage instance, if man M and woman W each put each other at the top of their respective preference lists, then M must be paired with W in every stable pairing.
- (c) In a stable marriage instance with at least two men and two women, if man M and woman W each put each other at the bottom of their respective preference lists, then M cannot be paired with W in any stable pairing.
- (d) For every n > 1, there is a stable marriage instance with n men and n women which has an unstable pairing in which every unmatched man-woman pair is a rogue couple.

4 Universal Preference

Suppose that preferences in a stable marriage instance are universal: all n men share the preferences $W_1 > W_2 > \cdots > W_n$ and all women share the preferences $M_1 > M_2 > \cdots > M_n$.

- (a) What result do we get from running the algorithm with men proposing? Can you prove it?
- (b) What result do we get from running the algorithm with women proposing?
- (c) What does this tell us about the number of stable matchings?