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1 Trees
Recall that a tree is a connected acyclic graph (graph without cycles). In the note, we presented a
few other definitions of a tree, and in this problem, we will prove two fundamental properties of a
tree, and derive two definitions of a tree we learn from lecture note based on these properties. Let’s
start with the properties:

(a) Prove that any pair of vertices in a tree are connected by exactly one (simple) path.

(b) Prove that adding any edge between two vertices of a tree creates a simple cycle.

Now you will show that if a graph satisfies either of these two properties then it must be a tree:

(c) Prove that if every pair of vertices in a graph are connected by exactly one simple path, then
the graph must be a tree.

(d) Prove that if the graph has no simple cycles and has the property that the addition of any single
edge (not already in the graph) will create a simple cycle, then the graph is a tree.

Solution:

(a) Pick any pair of vertices x, y. We know there is a path between them since the graph is
connected. We will prove that this path is unique by contradiction: Suppose there are two
distinct paths from x to y. At some point (say at vertex a) the paths must diverge, and at some
point (say at vertex b) they must reconnect. So by following the first path from a to b and the
second path in reverse from b to a we get a cycle. This gives the necessary contradiction.

(b) Pick any pair of vertices x, y not connected by an edge. We prove that adding the edge {x,y}
will create a simple cycle. From part (a), we know that there is a unique path between x and y.
Therefore, adding the edge {x,y} creates a simple cycle obtained by following the path from x
to y, then following the edge {x,y} from y back to x.

(c) Assume we have a graph with the property that there is a unique simple path between every
pair of vertices. We will show that the graph is a tree, namely, it is connected and acyclic. First,
the graph is connected because every pair of vertices is connected by a path. Moreover, the
graph is acyclic because there is a unique path between every pair of vertices. More explicitly,
if the graph has a cycle, then for any two vertices x, y in the cycle there are at least two simple
paths between them (obtained by going from x to y through the right or left half of the cycle),
contradicting the uniqueness of the path. Therefore, we conclude the graph is a tree.
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(d) Assume we have a graph with no simple cycles, but adding any edge will create a simple cycle.
We will show that the graph is a tree. We know the graph is acyclic because it has no simple
cycles. To show the graph is connected, we prove that any pair of vertices x, y are connected
by a path. We consider two cases: If {x,y} is an edge, then clearly there is a path from x to
y. Otherwise, if {x,y} is not an edge, then by assumption, adding the edge {x,y} will create
a simple cycle. This means there is a simple path from x to y obtained by removing the edge
{x,y} from this cycle. Therefore, we conclude the graph is a tree.

2 Planarity
Consider graphs with the property T : For every three distinct vertices v1,v2,v3 of graph G, there
are at least two edges among them. Prove that if G is a graph on ≥ 7 vertices, and G has property
T , then G is nonplanar.

Solution:

Assume G is planar. Take 5 vertices, they cannot form K5, so some pair v1,v2 have no edge between
them. The remaining five vertices of G cannot form K5 either, so there is a second pair v3,v4 that
have no edge between them. Now consider v1,v2 and any other three vertices v5,v6,v7. Since v1v2
is not an edge, by property T it must be that v1v and v2v where v ∈ {v5,v6,v7} are edges. Similarly
for v3,v4,v3v and v4v where v ∈ {v5,v6,v7} are edges. So now any three vertices in {v1,v2,v3,v4}
on one side and {v5,v6,v7} on the other form an instance of K3,3. Contradiction.

The above shows that any graph with 7 vertices and property T is non-planar. Any graph with > 7
vertices and property T will also be non-planar because it will contain a subgraph with 7 vertices
and property T .

3 Graph Coloring
Prove that a graph with maximum degree at most k is (k+1)-colorable.

Solution:

The natural way to try to prove this theorem is to use induction on k. Unfortunately, this approach
leads to disaster. It is not that it is impossible, just that it is extremely painful and would ruin your
week if you tried it on an exam. When you encounter such a disaster when using induction on
graphs, it is usually best to change what you are inducting on. In graphs, typical good choices for
the induction parameter are n, the number of nodes, or e, the number of edges.

We use induction on the number of vertices in the graph, which we denote by n. Let P(n) be the
proposition that an n-vertex graph with maximum degree at most k is (k+1)-colorable.

Base Case n = 1: A 1-vertex graph has maximum degree 0 and is 1-colorable, so P(1) is true.

Inductive Step: Now assume that P(n) is true, and let G be an (n+1)-vertex graph with maximum
degree at most k. Remove a vertex v (and all edges incident to it), leaving an n-vertex subgraph,H.
The maximum degree of H is at most k, and so H is (k+ 1)-colorable by our assumption P(n).
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Now add back vertex v. We can assign v a color (from the set of k+1 colors) that is different from
all its adjacent vertices, since there are at most k vertices adjacent to v and so at least one of the
k+1 colors is still available. Therefore, G is (k+1)-colorable. This completes the inductive step,
and the theorem follows by induction.

4 Hamiltonian Tour in a Hypercube
An alternative type of tour to an Eulerian Tour in graph is a Rudrata Tour: a tour that visits every
vertex exactly once. Prove or disprove that the hypercube contains a Rudrata cycle, for hypercubes
of dimension n≥ 2.

Solution:

We will strengthen the inductive hypothesis.

Stronger Inductive Claim: There exists a tour in an n-dimensional hypercube that uses the edge:
(0n, 10n−1).

Base Case: n = 2, the hypercube is just a four cycle, which is a cycle that contains the edge
(00,10) as required.

Inductive Hypothesis: We assume the claim holds for dimension n.

Inductive Step: The recursive definition of an n + 1 dimensional hypercube is to take two n
dimensional hypercubes, relabel each vertex x in one ”subcube” as 0x and relabel each vertex in
the other ”subcube” as 1x and add edges (0x,1x) for each x ∈ {0,1}n.

Use the inductive hypothesis to form seperate tours of each subcube which in the 0th subcube
contains the edge (00n−1,010n−2) and the 1th subcube contains (10n−1,110n−1). We remove these
edges then add the edges between the subcubes; (00n−1,10n−1) and (010n−2,110n−2).

Notice we do not change the degrees of any node in this swap thus the degree of all the nodes is
two.

Moreover, the tour is connected as one can reach every node from all zeros in the first cube using
the inductive tour, and in the second cube using the edge to the second cube and the rest of the
inductive tour.
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