1 Head Count

Consider a coin with \(\Pr(\text{Heads}) = \frac{2}{5} \). Suppose you flip the coin 20 times, and define \(X \) to be the number of heads.

(a) Name the distribution of \(X \) and what its parameters are.

(b) What is \(\Pr(X = 7) \)?

(c) What is \(\Pr(X \geq 1) \)? Hint: You should be able to do this without a summation.

(d) What is \(\Pr(12 \leq X \leq 14) \)?

Solution:

(a) Since we have 20 independent trials, with each trial having a probability \(\frac{2}{5} \) of success, \(X \sim \text{Binomial}(20, \frac{2}{5}) \).

(b) \[
\Pr(X = 7) = \binom{20}{7} \left(\frac{2}{5} \right)^7 \left(\frac{3}{5} \right)^{13}.
\]

(c) \[
\Pr(X \geq 1) = 1 - \Pr(X = 0) = 1 - \left(\frac{3}{5} \right)^{20}.
\]

(d) \[
\Pr(12 \leq X \leq 14) = \Pr(X = 12) + \Pr(X = 13) + \Pr(X = 14) \\
= \binom{20}{12} \left(\frac{2}{5} \right)^{12} \left(\frac{3}{5} \right)^8 + \binom{20}{13} \left(\frac{2}{5} \right)^{13} \left(\frac{3}{5} \right)^7 + \binom{20}{14} \left(\frac{2}{5} \right)^{14} \left(\frac{3}{5} \right)^6.
\]

2 How Many Queens?

You shuffle a standard 52-card deck, before drawing the first three cards from the top of the pile. Let \(X \) denote the number of queens you draw.

(a) What is \(\Pr(X = 0) \), \(\Pr(X = 1) \), \(\Pr(X = 2) \) and \(\Pr(X = 3) \)?
(b) What do your answers you computed in part a add up to?

(c) Compute $E(X)$ from the definition of expectation.

(d) Let X_i be an indicator random variable that equals 1 if the ith card a is queen and 0 otherwise. Are the X_i indicators independent?

Solution:

(a) Calculate each case of $X = 0, 1, 2, 3$:

We must draw 3 non-queen cards in a row, so the probability is

$$P(X = 0) = \frac{48}{52} \cdot \frac{47}{51} \cdot \frac{46}{50} = \frac{4324}{5525}.$$

Alternatively, every 3-card hand is equally likely, so we can use counting. There are $\binom{52}{3}$ total 3-card hands, and $\binom{48}{3}$ hands with only non-queen cards, which gives us the same result.

$$P(X = 0) = \frac{\binom{48}{3}}{\binom{52}{3}} = \frac{4324}{5525}.$$

• We will continue to use counting. The number of hands with exactly one queen amounts to the number of ways to choose 1 queen out of 4, and 2 non-queens out of 48.

$$P(X = 1) = \frac{\binom{4}{1} \binom{48}{2}}{\binom{52}{3}} = \frac{1128}{5525}.$$

• Choose 2 queens out of 4, and 1 non-queen out of 48.

$$P(X = 2) = \frac{\binom{4}{2} \binom{48}{1}}{\binom{52}{3}} = \frac{72}{5525}.$$

• Choose 3 queens out of 4.

$$P(X = 3) = \frac{\binom{4}{3}}{\binom{52}{3}} = \frac{1}{5525}.$$

(b) We check:

$$P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{4324 + 1128 + 72 + 1}{5525} = 1.$$

(c) From the definition, $E(X) = \sum_{k=0}^{3} kP(X = k)$, so

$$E(X) = 0 \cdot \frac{4324}{5525} + 1 \cdot \frac{1128}{5525} + 2 \cdot \frac{72}{5525} + 3 \cdot \frac{1}{5525} = \frac{3}{13}.$$

(d) No, they are not independent. As an example:

$$P(X_1 = 1)P(X_2 = 1) = \frac{1}{13} \cdot \frac{1}{13} = \frac{1}{169}.$$

However,

$$P(X_1 = 1, X_2 = 1) = P(\text{the first and second cards are both queens}) = \frac{4}{52} \cdot \frac{3}{51} = \frac{1}{221}.$$
3 Linearity

Solve each of the following problems using linearity of expectation. Explain your methods clearly.

(a) In an arcade, you play game A 10 times and game B 20 times. Each time you play game A, you win with probability $\frac{1}{3}$ (independently of the other times), and if you win you get 3 tickets (redeemable for prizes), and if you lose you get 0 tickets. Game B is similar, but you win with probability $\frac{1}{5}$, and if you win you get 4 tickets. What is the expected total number of tickets you receive?

(b) A monkey types at a 26-letter keyboard with one key corresponding to each of the lower-case English letters. Each keystroke is chosen independently and uniformly at random from the 26 possibilities. If the monkey types 1 million letters, what is the expected number of times the sequence “book” appears?

Solution:

(a) Let A_i be the indicator you win the ith time you play game A and B_i be the same for game B. The expected value of A_i and B_i are

$$\mathbb{E}[A_i] = 1 \cdot \frac{1}{3} + 0 \cdot \frac{2}{3} = \frac{1}{3},$$

$$\mathbb{E}[B_i] = 1 \cdot \frac{1}{5} + 0 \cdot \frac{4}{5} = \frac{1}{5}.$$

Let T_A be the random variable for the number of tickets you win in game A, and T_B be the number of tickets you win in game B.

$$\mathbb{E}[T_A + T_B] = 3\mathbb{E}[A_1] + \cdots + 3\mathbb{E}[A_{10}] + 4\mathbb{E}[B_1] + \cdots + 4\mathbb{E}[B_{20}]$$

$$= 10\left(3 \cdot \frac{1}{3}\right) + 20\left(4 \cdot \frac{1}{5}\right) = 26$$

(b) There are $1,000,000 - 4 + 1 = 999,997$ places where “book” can appear, each with a (non-independent) probability of $\frac{1}{26^4}$ of happening. If A is the random variable that tells how many times “book” appears, and A_i is the indicator variable that is 1 if “book” appears starting at the ith letter, then

$$\mathbb{E}[A] = \mathbb{E}[A_1 + \cdots + A_{999,997}]$$

$$= \mathbb{E}[A_1] + \cdots + \mathbb{E}[A_{999,997}]$$

$$= \frac{999,997}{26^4} \approx 2.19.$$