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1 Optimal Candidates
In the notes, we proved that the propose-and-reject algorithm always outputs the job-optimal pair-
ing. However, we never explicitly showed why it is guaranteed that putting every job with its
optimal candidate results in a pairing at all. Prove by contradiction that no two jobs can have the
same optimal candidate. (Note: your proof should not rely on the fact that the propose-and-reject
algorithm outputs the job-optimal pairing.)

Solution:

For the sake of contradiction, assume that we have some instance of the Stable Matching problem
where both job J and job J′ have candidate C as their optimal candidate. We further assume without
loss of generality that C prefers J to J′ (if this is not the case, we can just switch the names to make
it so). Because C is J′’s optimal partner, we know by definition that there must exist some stable
pairing P in which J′ is paired with C. Call J’s partner in P, C∗. Since C is J’s optimal partner,
we know by definition that J must prefer C to any candidate it is ever paired with in any stable
pairing–including C∗. Moreover, we previously said that C prefers J to J′. Thus, J and C would
form a rogue couple in P, which is a contradiction because P is stable. So our initial assumption
must be false: there must never exist two jobs who have the same optimal candidate.

2 Eulerian Tour and Eulerian Walk

(a) Is there an Eulerian tour in the graph above? If no, give justification. If yes, provide an
example.

(b) Is there an Eulerian walk in the graph above? An Eulerian walk is a walk that uses each edge
exactly once. If no, give justification. If yes, provide an example.

(c) What is the condition that there is an Eulerian walk in an undirected graph? Briefly justify
your answer.
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Solution:

(a) No. Two vertices have odd degree.

(b) Yes. One of the two vertices with odd degree must be the starting vertex, and the other one
must be the ending vertex. For example: 3,4,2,1,3,2,6,1,4,8,1,7,8,6,7 will be an Eulerian
walk (the numbers are the vertices visited in order). Note that there are 14 edges in the graph.

(c) This solution is long and in depth. Please read slowly, and don’t worry if it takes multiple
read-throughs since this is dense mathematical text.

An undirected graph has an Eulerian walk if and only if it is connected (except for isolated
vertices) and has at most two odd degree vertices. Note that there is no graph with only one
odd degree vertex (this is a result of the Handshake lemma, which we will prove in the next
question). An Eulerian tour is also an Eulerian walk which starts and ends at the same vertex.
We have already seen in the lectures, that an undirected graph G has an Eulerian tour if and
only if G is connected (except for isolated vertices) and all its vertices have even degree. We
will now prove that a graph G has an Eulerian walk with distinct starting and ending vertex,
if and only if it is connected (except for isolated vertices) and has exactly two odd degree
vertices.

Justifications: Only if. Suppose there exists an Eulerian walk, say starting at u and ending at v
(note that u and v are distinct). Then all the vertices that lie on this walk are connected to each
other and all the vertices that do not lie on this walk (if any) must be isolated. Thus the graph
is connected (except for isolated vertices). Moreover, every intermediate visit to a vertex in
this walk is being paired with two edges, and therefore, except for u and v, all other vertices
must be of even degree.

If. First, note that for a connected graph with no odd degree vertices, we have shown in the
lectures that there is an Eulerian tour, which implies an Eulerian walk. Thus, let us consider
the case of two odd degree vertices.

Solution 1: Take the two odd degree vertices u and v, and add a vertex w with two edges
(u,w) and (w,v). The resulting graph G′ has only vertices of even degree (we added one to the
degree of u and v and introduced a vertex of degree 2) and is still connected. So, we can find
an Eulerian tour on G′. Now, delete the component of the tour that uses edges (u,w) and (w,v).
The part of the tour that is left is now an Eulerian walk from u to v on the original graph, since
it traverses every edge on the original graph.

Solution 2: Alternatively, we can construct an algorithm quite similar to the FindTour algo-
rithm with splicing described in the graphs note.

Suppose G is connected (except for isolated vertices) and has exactly two odd degree vertices,
say u and v. First remove the isolated vertices if any. Since u and v belong to a connected
component, one can find a path from u to v. Consider the graph obtained by removing the
edges of the path from the graph. In the resulting graph, all the vertices have even degree.
Hence, for each connected component of the residual graph, we find an Eulerian tour. (Note
that the graph obtained by removing the edges of the path can be disconnected.) Observe that
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an Eulerian walk is simply an edge-disjoint walk that covers all the edges. What we just did
is decomposing all the edges into a path from u to v and a bunch of edge-disjoint Eulerian
tours. A path is clearly an edge-disjoint walk. Then, given an edge-disjoint walk and an
edge-disjoint tour such that they share at least one common vertex, one can combine them
into an edge-disjoint walk simply by augmenting the walk with the tour at the common vertex.
Therefore we can combine all the edge-disjoint Eulerian tours into the path from u to v to make
up an Eulerian walk from u to v.

3 Not everything is normal: Odd-Degree Vertices
Claim: Let G = (V,E) be an undirected graph. The number of vertices of G that have odd degree
is even.

Prove the claim above using:

(i) Direct proof (e.g., counting the number of edges in G). Hint: in lecture, we proved that
∑v∈V degv = 2|E|.

(ii) Induction on m = |E| (number of edges)

(iii) Induction on n = |V | (number of vertices)

Solution:

Let Vodd(G) denote the set of vertices in G that have odd degree. We prove that |Vodd(G)| is even.

(i) Let dv denote the degree of vertex v (so dv = |Nv|, where Nv is the set of neighbors of v).
Observe that

∑
v∈V

dv = 2m

because every edge is counted exactly twice when we sum the degrees of all the vertices.
Now partition V into the odd degree vertices Vodd(G) and the even degree vertices Vodd(G)c,
so we can write

∑
v∈Vodd(G)

dv = 2m− ∑
v/∈Vodd(G)

dv.

Both terms in the right-hand side above are even (2m is even, and each term dv is even
because we are summing over even degree vertices v /∈ Vodd(G)). So for the left-hand side
∑v∈Vodd(G) dv to be even, we must have an even number of terms, since each term in the
summation is odd. Therefore, there must be an even number of odd-degree vertices, namely,
|Vodd(G)| is even.

(ii) We use induction on m≥ 0.

Base case m = 0: If there are no edges in G, then all vertices have degree 0, so Vodd(G) =∅.

Inductive hypothesis: Assume |Vodd(G)| is even for all graphs G with m edges.
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Inductive step: Let G be a graph with m+ 1 edges. Remove an arbitrary edge {u,v} from
G, so the resulting graph G′ has m edges. By the inductive hypothesis, we know |Vodd(G′)|
is even. Now add the edge {u,v} to get back the original graph G. Note that u has one more
edge in G than it does in G′, so u∈Vodd(G) if and only if u /∈Vodd(G′). Similarly, v∈Vodd(G)
if and only if v /∈Vodd(G′). The degrees of all other vertices are unchanged in going from G′

to G. Therefore,

Vodd(G) =


Vodd(G′)∪{u,v} if u,v /∈Vodd(G′)

Vodd(G′)\{u,v} if u,v ∈Vodd(G′)

(Vodd(G′)\{u})∪{v} if u ∈Vodd(G′),v /∈Vodd(G′)

(Vodd(G′)\{v})∪{u} if u /∈Vodd(G′),v ∈Vodd(G′)

so we see that |Vodd(G)| − |Vodd(G′)| ∈ {−2,0,2}. Since |Vodd(G′)| is even, we conclude
|Vodd(G)| is also even.

(iii) We use induction on n≥ 1.

Base case n = 1: If G only has 1 vertex, then that vertex has degree 0, so Vodd(G) =∅.

Inductive hypothesis: Assume |Vodd(G)| is even for all graphs G with n vertices.

Inductive step: Let G be a graph with n+1 vertices. Remove a vertex v and all edges adjacent
to it from G. The resulting graph G′ has n vertices, so by the inductive hypothesis, |Vodd(G′)|
is even. Now add the vertex v and all edges adjacent to it to get back the original graph G.
Let Nv ⊆ V denote the neighbors of v (i.e., all vertices adjacent to v). Among the neighbors
Nv, the vertices in the intersection A = Nv∩Vodd(G′) had odd degree in G′, so they now have
even degree in G. On the other hand, the vertices in B = Nv∩Vodd(G′)c had even degree in
G′, and they now have odd degree in G. The vertex v itself has degree |Nv|, so v ∈Vodd(G) if
and only if |Nv| is odd. We now consider two cases:

(a) Suppose |Nv| is even, so v /∈Vodd(G). Then

Vodd(G) = (Vodd(G′)\A)∪B

so |Vodd(G)| = |Vodd(G′)| − |A|+ |B|. Note that A and B are disjoint and their union
equals Nv, so |A|+ |B|= |Nv|. Therefore, we can write |Vodd(G)| as

|Vodd(G)|= |Vodd(G′)|+ |Nv|−2|A|

which is even, since |Vodd(G′)| is even by the inductive hypothesis, and |Nv| is even by
assumption.

(b) Suppose |Nv| is odd, so v ∈Vodd(G). Then

Vodd(G) = (Vodd(G′)\A)∪B∪{v}

so, again using the relation |A|+ |B|= |Nv|, we can write

|Vodd(G)|= |Vodd(G′)|− |A|+ |B|+1 = |Vodd(G′)|+(|Nv|+1)−2|A|

which is even, since |Vodd(G′)| is even by the inductive hypothesis, and |Nv| is odd by
assumption.
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This completes the inductive step and the proof.

Note how this proof is more complicated than the proof in part (ii), even though they are both
using induction. This tells you that choosing the right variable to induct on can simplify the
proof.
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