1 Banquet Arrangement

Suppose \(n \) people are attending a banquet, and each of them has at least \(m \) friends (\(2 \leq m \leq n \)), where friendship is mutual. Prove that we can put at least \(m + 1 \) of the attendants on the same round table, so that each person sits next to his or her friends on both sides.

Solution: Let each person be a vertex and add an edge between two people if they are friends. Thus we have a graph with \(n \) vertices. Since each of them has at least \(m \) friends, we know that all the vertices in the graph have degree at least \(m \). Suppose we find a cycle of length at least \(m + 1 \) in this graph, say \(C = \{v_0, v_1, \ldots, v_k\} \), where \(k \geq m \). If we place these \(k + 1 \) people at the round table in the order given by the cycle \(C \), they observe that each person sits next to his or her friends since he/she has an edge with him/her in the corresponding graph. Thus we can rephrase the problem in graph theory terms as follows: given that all the vertices in an \(n \)-vertex graph have degree at least \(m \), show that there exists a cycle containing at least \(m + 1 \) vertices.

Let \(P = v_0v_1 \ldots v_l \) be a longest path in the graph. Such a path exists because the length of paths is bounded above by \(n \). All neighbors of \(v_0 \) must be in \(P \), since otherwise \(P \) can be extended to be even longer by appending this edge at the beginning of path \(P \). Let \(k \) be the maximum index of neighbors of \(v_0 \) along \(P \). Since \(v_0 \) has at least \(m \) neighbors, we must have \(k \geq m \). Then \(v_0v_1 \ldots v_kv_0 \) gives us the desired cycle.

2 Edge Colorings

An edge coloring of a graph is an assignment of colors to edges in a graph where any two edges incident to the same vertex have different colors. An example is shown on the left.

(a) Show that the 4 vertex complete graph above can be 3 edge colored. (Use the numbers 1, 2, 3 for colors. A figure is shown on the right.)

(b) Prove that any graph with maximum degree \(d \geq 1 \) can be edge colored with \(2d - 1 \) colors.
(c) Show that a tree can be edge colored with d colors where d is the maximum degree of any vertex.

Solution:

(a) Three color a triangle. Now add the fourth vertex notice, call it vertex u. For any edge, say $\{u, v\}$ from this fourth vertex u, observe that the vertex v has two edges from before and hence there a third color available for the edge $\{u, v\}$.

(b) We will use induction on the number of edges n in the graph to prove the statement: If a graph G has $n \geq 0$ edges and the maximum degree of any vertex is d, then G can be colored with $2d - 1$ colors.

Base case ($n = 0$). If there are no edges in the graph, then there is nothing to be colored and the statement holds trivially.

Inductive hypothesis. Suppose for $n = k \geq 0$, the statement holds.

Inductive step. Consider a graph G with $n = k + 1$ edges. Remove an edge of your choice, say e from G. Note that in the resulting graph the maximum degree of any vertes is $d' \leq d$. By the inductive hypothesis, we can color this graph using $2d' - 1$ colors and hence with $2d - 1$ colors too. The removed edge is incident to two vertices each of which is incident to at most $d - 1$ other edges, and thus at most $2(d - 1) = 2d - 2$ colors are unavailable for edge e. Thus, we can color edge e without any conflicts. This proves the statement for $n = k + 1$ and hence by induction we get that the statement holds for all $n \geq 0$.

(c) We will use induction on the number of vertices n in the tree to prove the statement: For a tree with $n \geq 1$ vertices, if the maximum degree of any vertex is d, then the tree can be colored with d colors.

Base case ($n=1$). If there is only one vertex, then there are no edges to color, and thus can be colored with 0 colors.

Inductive hypothesis. Suppose the statement holds for $n = k \geq 1$.

Inductive Step. Remove any leaf v of your choice from the tree. We can then color the remaining tree with d colors by the inductive hypothesis. For any neighboring vertex u of vertex v, the degree of u is at most $d - 1$ since we removed the edge $\{u, v\}$ along with the vertex v. Thus its incident edges use at most $d - 1$ colors and there is a color available for coloring the edge.
{u,v}. This completes the inductive step and by induction we have that the statement holds for all \(n \geq 1 \).

3 Triangular Faces

Suppose we have a connected planar graph \(G \) with \(v \) vertices and \(e \) edges such that \(e = 3v - 6 \). Prove that in any planar drawing of \(G \), every face must be a triangle; that is, prove that every face must be incident to exactly three edges of \(G \).

Solution:
Suppose for the sake of contradiction that we have found a planar drawing of \(G \) such that one of the faces is incident on more than three edges. Choose an arbitrary vertex on that face to call \(v_0 \), and number the other vertices around the face \(v_1, v_2, ..., v_k \) proceeding clockwise from \(v_0 \). Since this face has at least 4 sides, we know that \(v_0 \) and \(v_2 \) do not have an edge between them. Furthermore, we know that we can add this edge to the planar drawing of \(G \) without having it cross any existing edges by just letting it cross the face. Thus, adding an edge between \(v_0 \) and \(v_2 \) results in a planar graph with \(v \) vertices and \(e + 1 = 3v - 5 \) edges. But we know that a planar graph can have at most \(3v - 6 \) edges, so this is a contradiction. Thus, we must have that no such face exists; that is, we must have that every face in \(G \) is incident on exactly 3 edges.

4 True or False

(a) Any pair of vertices in a tree are connected by exactly one path.
(b) Adding an edge between two vertices of a tree creates a new cycle.
(c) Adding an edge in a connected graph creates exactly one new cycle.
(d) We can create a soccer ball by stitching together 10 pentagons and 20 hexagonal pieces, with three pieces meeting at each vertex.

Solution:

(a) True.
Pick any pair of vertices \(x, y \). We know there is a path between them since the graph is
connected. We will prove that this path is unique by contradiction: Suppose there are two distinct paths from \(x \) to \(y \). At some point (say at vertex \(a \)) the paths must diverge, and at some point (say at vertex \(b \)) they must reconnect. So by following the first path from \(a \) to \(b \) and the second path in reverse from \(b \) to \(a \) we get a cycle. This gives the necessary contradiction.

(b) **True.**

Pick any pair of vertices \(x \), \(y \) not connected by an edge. We prove that adding the edge \(\{x, y\} \) will create a cycle. From part (a), we know that there is a unique path between \(x \) and \(y \). Therefore, adding the edge \(\{x, y\} \) creates a cycle obtained by following the path from \(x \) to \(y \), then following the edge \(\{x, y\} \) from \(y \) back to \(x \).

(c) **False.**

In the following graph adding an edge creates two cycles.

(d) **False.**

If \(P \) pentagons and \(H \) hexagons are used, then there are \(f = P + H \) faces, \(v = (5P + 6H)/3 \) vertices, and \(e = (5P + 6H)/2 \) edges. Since a soccer ball is a polyhedron without holes, by Euler’s formula we have

\[
2 = v + f - e = \frac{5P + 6H}{3} + P + H - \frac{5P + 6H}{2} = \frac{P}{6}.
\]

Thus the number of pentagons must be 12 and not 10.