1 Polynomial Practice

(a) If f and g are non-zero real polynomials, how many roots do the following polynomials have at least? How many can they have at most? (Your answer may depend on the degrees of f and g.)

(i) $f + g$
(ii) $f \cdot g$
(iii) f/g, assuming that f/g is a polynomial

(b) Now let f and g be polynomials over $\text{GF}(p)$.

(i) We say a polynomial $f = 0$ if $\forall x, f(x) = 0$. If $f \cdot g = 0$, is it true that either $f = 0$ or $g = 0$?

(ii) How many f of degree exactly $d < p$ are there such that $f(0) = a$ for some fixed $a \in \{0, 1, \ldots, p - 1\}$?

(c) Find a polynomial f over $\text{GF}(5)$ that satisfies $f(0) = 1, f(2) = 2, f(4) = 0$. How many such polynomials are there?
2 Rational Root Theorem

The rational root theorem states that for a polynomial

\[P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \]

\[a_0, \ldots, a_n \in \mathbb{Z}, \text{ if } a_0, a_n \neq 0, \] then for each rational solution \(\frac{p}{q} \) such that \(\gcd(p, q) = 1 \), \(p | a_0 \) and \(q | a_n \). Prove the rational root theorem.

3 Secrets in the United Nations

A vault in the United Nations can be opened with a secret combination \(s \in \mathbb{Z} \). In only two situations should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries, plus the U.N. Secretary-General, must agree.

(a) Propose a scheme that gives private information to the Secretary-General and all 193 member countries so that the secret combination \(s \) can only be recovered under either one of the two specified conditions.

(b) The General Assembly of the UN decides to add an extra level of security: each of the 193 member countries has a delegation of 12 representatives, all of whom must agree in order for that country to help open the vault. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary-General and to each representative of each country.
4 Old Secrets, New Secrets

In order to share a secret number s, Alice distributed the values $(1, p(1)), (2, p(2)), \ldots, (n+1, p(n+1))$ of a degree n polynomial p with her friends Bob$_1, \ldots, Bob_{n+1}$. As usual, she chose p such that $p(0) = s$. Bob$_1$ through Bob$_{n+1}$ now gather to jointly discover the secret. Suppose that for some reason Bob$_1$ already knows s, and wants to play a joke on Bob$_2, \ldots, Bob_{n+1}$, making them believe that the secret is in fact some fixed $s' \neq s$. How could he achieve this? In other words, what value should he report in order to make the others believe that the secret is s'?