1 Berlekamp-Welch Warm Up

Let $P(i)$, a polynomial applied to the input i, be the original encoded polynomial before sent, and let r_i be the received info for the input i which may or may not be corrupted.

(a) When does $r_i = P(i)$? When does r_i not equal $P(i)$?

(b) If you want to send a length-n message, what should the degree of $P(x)$ be? Why?

(c) If there are at most k erasure errors, how many packets should you send? If there are at most k general errors, how many packets should you send? (We will see the reason for this later.) Now we will only consider general errors.

(d) What do the roots of the error polynomial $E(x)$ represent? Does the receiver know the roots of $E(x)$? If there are at most k errors, what is the maximum degree of $E(x)$? Using the information about the degree of $P(x)$ and $E(x)$, what is the degree of $Q(x) = P(x)E(x)$?

(e) Why is the equation $Q(i) = P(i)E(i) = r_iE(i)$ always true? (Consider what happens when $P(i) = r_i$, and what happens when $P(i)$ does not equal r_i.)

(f) In the polynomials $Q(x)$ and $E(x)$, how many total unknown coefficients are there? (These are the variables you must solve for. Think about the degree of the polynomials.) When you receive packets, how many equations do you have? Do you have enough equations to solve for all of the unknowns? (Think about the answer to the earlier question - does it make sense now why we send as many packets as we do?)

(g) If you have $Q(x)$ and $E(x)$, how does one recover $P(x)$? If you know $P(x)$, how can you recover the original message?
2 Berlekamp-Welch Algorithm

In this question we will send the message \((m_0, m_1, m_2) = (1, 1, 4)\) of length \(n = 3\). We will use an error-correcting code for \(k = 1\) general error, doing arithmetic over GF(5).

(a) Construct a polynomial \(P(x) \pmod{5}\) of degree at most 2, so that

\[
P(0) = 1, \quad P(1) = 1, \quad P(2) = 4.
\]

What is the message \((c_0, c_1, c_2, c_3, c_4)\) that is sent?

(b) Suppose the message is corrupted by changing \(c_0\) to 0. Set up the system of linear equations in the Berlekamp-Welch algorithm to find \(Q(x)\) and \(E(x)\).

(c) Assume that after solving the equations in part (b) we get \(Q(x) = 4x^3 + x^2 + x\) and \(E(x) = x\). Show how to recover the original message from \(Q\) and \(E\).

3 Error-Correcting Codes

(a) Recall from class the error-correcting code for erasure errors, which protects against up to \(k\) lost packets by sending a total of \(n + k\) packets (where \(n\) is the number of packets in the original message). Often the number of packets lost is not some fixed number \(k\), but rather a fraction of the number of packets sent. Suppose we wish to protect against a fraction \(\alpha\) of lost packets (where \(0 < \alpha < 1\)). At least how many packets do we need to send (as a function of \(n\) and \(\alpha\))?

(b) Repeat part (a) for the case of general errors.