1. [True or False]

(a) The set of all irrational numbers \(\mathbb{R} \setminus \mathbb{Q} \) (i.e. real numbers that are not rational) is uncountable.

(b) The set of integers \(x \) that solve the equation \(3x \equiv 2 \pmod{10} \) is countably infinite.

(c) The set of real solutions for the equation \(x + y = 1 \) is countable.

For any two functions \(f : Y \to Z \) and \(g : X \to Y \), let their composition \(f \circ g : X \to Z \) be given by \(f \circ g = f(g(x)) \) for all \(x \in X \). Determine if the following statements are true or false.

(d) \(f \) and \(g \) are injective (one-to-one) \(\implies \) \(f \circ g \) is injective (one-to-one).

(e) \(f \) is surjective (onto) \(\implies \) \(f \circ g \) is surjective (onto).

Solution:

(a) True. Proof by contradiction. Suppose the set of irrationals is countable. From Lecture note 10 we know that the set \(\mathbb{Q} \) is countable. Since union of two countable sets is countable, this would imply that the set \(\mathbb{R} \) is countable. But again from Lecture note 10 we know that this is not true. Contradiction!

(b) True. Multiplying both sides of the modular equation by 7 (the multiplicative inverse of 3 with respect to 10) we get \(x \equiv 4 \pmod{10} \). The set of all integers that solve this is \(S = \{10k + 4 : k \in \mathbb{Z}\} \) and it is clear that the mapping \(k \in \mathbb{Z} \) to \(10k + 4 \in S \) is a bijection. Since the set \(\mathbb{Z} \) is countably infinite, the set \(S \) is also countably infinite.

(c) False. Let \(S \in \mathbb{R} \times \mathbb{R} \) denote the set of all real solutions for the given equation. For any \(x' \in \mathbb{R} \), the pair \((x', y') \in S \) if and only if \(y' = 1 - x' \). Thus \(S = \{(x, 1-x) : x \in \mathbb{R}\} \). Besides, the mapping \(x \) to \((x, 1-x) \) is a bijection from \(\mathbb{R} \) to \(S \). Since \(\mathbb{R} \) is uncountable, we have that \(S \) is uncountable too.

(d) True. Recall that a function \(h : A \to B \) is injective iff \(a_1 \neq a_2 \implies h(a_1) \neq h(a_2) \) for all \(a_1, a_2 \in A \). Let \(x_1, x_2 \in X \) be arbitrary such that \(x_1 \neq x_2 \). Since \(g \) is injective, we have \(g(x_1) \neq g(x_2) \). Now, since \(f \) is injective, we have \(f(g(x_1)) \neq f(g(x_2)) \). Hence \(f \circ g \) is injective.

(e) False. Recall that a function \(h : A \to B \) is surjective iff \(\forall b \in B, \exists a \in A \) such that \(h(a) = b \). Let \(g : \{0, 1\} \to \{0, 1\} \) be given by \(g(0) = g(1) = 0 \). Let \(f : \{0, 1\} \to \{0, 1\} \) be given by \(f(0) = 0 \) and \(f(1) = 1 \). Then \(f \circ g : \{0, 1\} \to \{0, 1\} \) is given by \((f \circ g)(0) = (f \circ g)(1) = 0 \). Here \(f \) is surjective but \(f \circ g \) is not surjective.
2. Consider an \(n \times n \) matrix \(A \) where the diagonal consists of alternating 1’s and 0’s starting from 1, i.e. \(A[0,0] = 1, A[1,1] = 0, A[2,2] = 1, \) etc. Describe an \(n \) length vector from \(\{0,1\}^n \) that is not equal to any row in the matrix \(A \). (Note that the all ones vector or the all zeros vector of length \(n \) could each be rows in the matrix.)

Solution:

The row consisting of alternating 1’s and 0’s starting with 0. That is, 010101… Recall the diagonalization idea of constructing something not in a list by making it different along the diagonal.

3. Find the precise error in the following proof:

False Claim: The set of rationals \(r \) such that \(0 \leq r \leq 1 \) is uncountable.

Proof: Suppose towards a contradiction that there is a bijection \(f : \mathbb{N} \rightarrow \mathbb{Q}[0,1] \), where \(\mathbb{Q}[0,1] \) denotes the rationals in \([0,1] \). This allows us to list all the rationals between 0 and 1, with the \(j \)-th element of the list being \(f(j) \). Suppose we represent each of these rationals by their non-terminating expansion (for example, 0.4999… rather than 0.5). Let \(d_j \) denote the \(j \)-th digit of \(f(j) \). We define a new number \(e \), whose \(j \)-th digit \(e_j \) is equal to \((d_j + 2) \pmod{10} \). We claim that \(e \) does not occur in our list of rationals between 0 and 1. This is because \(e \) cannot be equal to \(f(j) \) for any \(j \), since it differs from \(f(j) \) in the \(j \)-th digit by more than 1. Contradiction. Therefore the set of rationals between 0 and 1 is uncountable.

Solution: The number \(e \) constructed in the proof can be irrational (in fact, it has to be irrational). And hence \(e \) being different from all the numbers \(f(j) \) does not lead to a contradiction.