1 Head Count

Consider a coin with \(P(\text{Heads}) = \frac{2}{5} \). Suppose you flip the coin 20 times, and define \(X \) to be the number of heads.

(a) Name the distribution of \(X \) and what its parameters are.

(b) What is \(P(X = 7) \)?

(c) What is \(P(X \geq 1) \)? Hint: You should be able to do this without a summation.

(d) What is \(P(12 \leq X \leq 14) \)?

Solution:

(a) Since we have 20 independent trials, with each trial having a probability \(\frac{2}{5} \) of success, \(X \sim \text{Binomial}(20, \frac{2}{5}) \).

(b)

\[
P(X = 7) = \binom{20}{7} \left(\frac{2}{5} \right)^7 \left(\frac{3}{5} \right)^{13}.
\]

(c)

\[
P(X \geq 1) = 1 - P(X = 0) = 1 - \left(\frac{3}{5} \right)^{20}.
\]

(d)

\[
P(12 \leq X \leq 14) = P(X = 12) + P(X = 13) + P(X = 14) = \binom{20}{12} \left(\frac{2}{5} \right)^{12} \left(\frac{3}{5} \right)^8 + \binom{20}{13} \left(\frac{2}{5} \right)^{13} \left(\frac{3}{5} \right)^7 + \binom{20}{14} \left(\frac{2}{5} \right)^{14} \left(\frac{3}{5} \right)^6.
\]

2 Exploring the Geometric Distribution

Suppose \(X \sim \text{Geometric}(p) \) and \(Y \sim \text{Geometric}(q) \) are independent. Find the distribution of \(\min\{X,Y\} \) and justify your answer.
Solution:

x is the number of coins we flip until we see a heads from flipping a coin with bias p, and y is the same as flipping a coin with bias q. Imagine we flip the bias p coin and the bias q coin at the same time. The min of the two random variables represents how many simultaneous flips occur before at least one head is seen.

The probability of not seeing a head at all on any given simultaneous flip is $(1 - p)(1 - q)$, so the probability that there will be a success on any particular trial is $p + q - pq$. Therefore, $\min\{x, y\} \sim \text{Geometric}(p + q - pq)$.

We can also solve it algebraically. The probability that $\min\{x, y\} = k$ for some positive integer k is the probability that the first $k-1$ coin flips for both x and y were tails, then times the probability that we get heads on the k-th toss. Specifically,

$$(1 - p)(1 - q)^{k-1} \cdot (p + q - pq)$$

We recognize this as the formula for a geometric random variable with parameter $p + q - pq$.

3 The Memoryless Property

Let x be a discrete random variable which takes on values in \mathbb{Z}_+. Suppose that for all $m, n \in \mathbb{N}$, we have $\Pr(x > m + n | x > n) = \Pr(x > m)$. Prove that x is a geometric distribution. Hint: In order to prove that x is geometric, it suffices to prove that there exists a $p \in [0, 1]$ such that $\Pr(x > i) = (1 - p)^i$ for all $i > 0$.

Solution:

Notice that

$$\Pr(x > m + n | x > n) = \frac{\Pr(x > m + n)}{\Pr(x > n)} = \Pr(x > m),$$

where the first equality holds from definition of conditional probability, and the second from the given in the question. So, this gives $\Pr(x > m + n) = \Pr(x > m)\Pr(x > n)$.

$$\Pr(x > m) = \Pr(x > m + n | x > n) = \frac{\Pr(x > m + n)}{\Pr(x > n)},$$

where that the first equality comes from the given in the question, and the second equality holds from definition of conditional. So, this gives $\Pr(x > m + n) = \Pr(x > m)\Pr(x > n)$.

By repeatedly applying this property, we can deduce $\Pr(x > n) = \Pr(x > 1 + \cdots + 1) = \Pr(x > 1)^n$. Let $p := 1 - \Pr(x > 1)$. We see that $\Pr(x > n) = (1 - p)^n$, which is the tail probability of the geometric distribution, and hence $x \sim \text{Geo}(p)$.

4 Cookie Jars

You have two jars of cookies, each of which starts with n cookies initially. Every day, when you come home, you pick one of the two jars randomly (each jar is chosen with probability $1/2$) and
eat one cookie from that jar. One day, you come home and reach inside one of the jars of cookies, but you find that is empty! Let X be the random variable representing the number of remaining cookies in non-empty jar at that time. What is the distribution of X?

Solution: Assume that you found jar 1 empty. The probability that $X = k$ and you found jar 1 empty is computed as follows. In order for there to be k cookies remaining, you must have eaten a cookie for $2n - k$ days, and then you must have chosen jar 1 (to discover that it is empty). Within those $2n - k$ days, exactly n of those days you chose jar 1. The probability of this is $\binom{2n-k}{n} 2^{-(2n-k)}$. Furthermore, the probability that you then discover jar 1 is empty the day after is $1/2$. So, the probability that $X = k$ and you discover jar 1 empty is $\binom{2n-k}{n} 2^{-(2n-k+1)}$. However, we assumed that we discovered jar 1 to be empty; the probability that $X = k$ and jar 2 is empty is the same by symmetry, so the overall probability that $X = k$ is:

$$
P(X = k) = \binom{2n-k}{n} \frac{1}{2^{2n-k}}, \quad k \in \{0, \ldots, n\}.
$$