1 Head Count

Consider a coin with \(P(\text{Heads}) = \frac{2}{5} \). Suppose you flip the coin 20 times, and define \(X \) to be the number of heads.

(a) Name the distribution of \(X \) and what its parameters are.

(b) What is \(P(X = 7) \)?

(c) What is \(P(X \geq 1) \)? Hint: You should be able to do this without a summation.

(d) What is \(P(12 \leq X \leq 14) \)?

2 Exploring the Geometric Distribution

Suppose \(X \sim \text{Geometric}(p) \) and \(Y \sim \text{Geometric}(q) \) are independent. Find the distribution of \(\min\{X, Y\} \) and justify your answer.

3 The Memoryless Property

Let \(X \) be a discrete random variable which takes on values in \(\mathbb{Z}_+ \). Suppose that for all \(m, n \in \mathbb{N} \), we have \(P(X > m + n \mid X > n) = P(X > m) \). Prove that \(X \) is a geometric distribution. Hint: In order to prove that \(X \) is geometric, it suffices to prove that there exists a \(p \in [0, 1] \) such that \(P(X > i) = (1 - p)^i \) for all \(i > 0 \).
4 Cookie Jars

You have two jars of cookies, each of which starts with n cookies initially. Every day, when you come home, you pick one of the two jars randomly (each jar is chosen with probability $1/2$) and eat one cookie from that jar. One day, you come home and reach inside one of the jars of cookies, but you find that is empty! Let X be the random variable representing the number of remaining cookies in non-empty jar at that time. What is the distribution of X?