
CS 70 Discrete Mathematics and Probability Theory
Fall 2017 Satish Rao and Kannan Ramchandran

HW 4

Sundry
Before you start your homework, write down your team. Who else did you work with on this
homework? List names and email addresses. (In case of homework party, you can also just describe
the group.) How did you work on this homework? Working in groups of 3-5 will earn credit for
your "Sundry" grade.

Please copy the following statement and sign next to it:

I certify that all solutions are entirely in my words and that I have not looked at another student’s
solutions. I have credited all external sources in this write up.

I certify that all solutions are entirely in my words and that I have not looked at another student’s
solutions. I have credited all external sources in this write up. (signature here)

1 Don’t Try This at Home
A ticket in the lottery consists of six numbers chosen from 1,2, . . . ,48 (repetitions allowed). After
everyone has bought their tickets, the manager picks 5 winning numbers from this set at random.
Your ticket wins if it contains each of these winning numbers. Order is irrelevant.

Prove that if you buy all possible tickets for which the sum of the six entries on the ticket is divisible
by 47, then you are guaranteed to have a winner.

Solution:

We show that, for any choice of the winning numbers, there exists a winning ticket whose sum of
entries is divisible by 47.

Let a,b,c,d,e be the winning numbers, and let s =−a−b− c−d− e mod 47.

(Let’s assume that we take s to be the smallest positive integer satisfying this congruence modulo
47.) Then consider the ticket a,b,c,d,e,s. This is a valid ticket, since 1 ≤ s ≤ 47. It is a winning
ticket, since it contains the winning numbers a,b,c,d,e. Finally, it is a ticket we would have
bought, since we have a+ b+ c+ d + e+ s ≡ 0 (mod 47), and thus the sum of entries on this
ticket is a multiple of 47.
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2 Euclid’s Algorithm
(a) Use Euclid’s algorithm from lecture to compute the greatest common divisor of 527 and 323.

List the values of x and y of all recursive calls.

(b) Use extended Euclid’s algorithm from lecture to compute the multiplicative inverse of 5 mod
27. List the values of x and y and the returned values of all recursive calls.

(c) Find x (mod 27) if 5x+26≡ 3 (mod 27). You can use the result computed in (b).

(d) Assume a, b, and c are integers and c > 0. Prove or disprove: If a has no multiplicative inverse
mod c, then ax≡ b (mod c) has no solution.

Solution:

(a) The values of x and y of all recursive calls are (you can get full credits without the column of
x mod y):

Function Calls (x,y) x mod y
#1 (527,323) 204
#2 (323,204) 119
#3 (204,119) 85
#4 (119,85) 34
#5 (85,34) 17
#6 (34,17) 0
#7 (17,0) —

Therefore, gcd(527,323) = 17.

(b) To compute the multiplicative inverse of 5 mod 27, we first call extended-gcd(27,5).
Note that (x div y) in the pseudocode means bx/yc. The values of x and y of all recursive
calls are (you can get full credits without the columns of x div y and x mod y):

Function Calls (x,y) x div y x mod y
#1 (27,5) 5 2
#2 (5,2) 2 1
#3 (2,1) 2 0
#4 (1,0) — —

The returned values of all recursive calls are:

Function Calls (d,a,b) Returned Values
#4 — (1,1,0)
#3 (1,1,0) (1,0,1)
#2 (1,0,1) (1,1,−2)
#1 (1,1,−2) (1,−2,11)
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Therefore, we get 1 = (−2)×27+11×5 and

1 = (−2)×27+11×5≡ 11×5 (mod 27),

so the multiplicative inverse of 5 mod 27 is 11.

(c)

5x+26≡ 3 (mod 27) ⇒ 5x≡ 3−26 (mod 27)
⇒ 5x≡−23 (mod 27)
⇒ 5x≡ 4 (mod 27)
⇒ 11×5x≡ 11×4 (mod 27)
⇒ x≡ 44 (mod 27)
⇒ x≡ 17 (mod 27).

(d) False. We can have a counterexample: a = 3, b = 6, and c = 12, so a has no multiplicative
inverse mod c (because a = 3 and c = 12 are not relatively prime). However, 3x≡ 6 (mod 12)
has solutions x = 2,6,10 mod 12.

3 Solution for ax≡ b (mod m)

In the notes, we proved that when gcd(m,a) = 1, a has a unique multiplicative inverse, or equiva-
lently ax ≡ 1 (mod m) has exactly one solution x (modulo m). This proof also implies that when
gcd(m,a) = 1, there is a unique solution to ax≡ b (mod m), where x is the unknown variable.

Now consider the equation ax≡ b (mod m), when gcd(m,a)> 1.

(a) Let gcd(m,a) = d. Prove that ax ≡ b (mod m) has a solution (that is, there exists an x that
satisfies this equation) if and only if b≡ 0 (mod d).

(b) Let gcd(m,a)= d. Assume b≡ 0 (mod d). Prove that ax≡ b (mod m) has exactly d solutions
(modulo m).

(c) Solve for x: 77x≡ 35 (mod 42).

Solution:

(a) Necessary condition: ax≡ b (mod m) has a solution =⇒ b≡ 0 (mod d).

If ax≡ b (mod m) has a solution, we can write ax = my+b for some x,y ∈ Z.
Since d is the greatest common divisor of m and a, we know that d | a and d | m. Therefore d
divides ax−my = b, or equivalently, b≡ 0 (mod d).

Sufficient condition: b≡ 0 (mod d) =⇒ ax≡ b (mod m) has a solution.
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Consider the congruent equation

a
d

x≡ b
d

(mod
m
d
). (1)

We know that
gcd(m,a) = d =⇒ gcd

(m
d
,

a
d

)
= 1.

Therefore (1) has a solution, or equivalently, ∃x,y ∈ Z, such that

a
d

x =
m
d

y+
b
d
.

=⇒ ax = my+b.
=⇒ x is a solution for ax≡ b (mod m).

Alternate proof for sufficient condition:
If d | b, we can write b = kd for some k ∈ Z. Since gcd(m,a) = d, ∃w,y ∈ Z, such that
aw+my = d, similar to what we’ve seen with extended Euclid’s algorithm. Multiplying both
sides by k, we get kaw+ kmy = kd = b. So

akw+mky≡ b (mod m),

akw≡ b (mod m).

Then, kw is a solution of ax≡ b (mod m).

(b) From the proof of sufficient condition in Part (a), we have shown that if x satisfies (1), then x
also satisfies ax≡ b (mod m). How about the reverse?
If x satisfies ax≡ b (mod m), then

ax = my+b for some y ∈ Z,

=⇒ a
d

x =
m
d

y+
b
d
,

=⇒ x satisfies
a
d

x≡ b
d

(mod
m
d
).

We conclude the following Lemma from the above proof:

Lemma: ∀x ∈ Z, x satisfies (1) if and only if x satisfies ax≡ b (mod m).

Let x0 be the unique solution of (1). Any x ∈ Z that satisfies (1) must be of the form

x = x0 + k
m
d

for some k ∈ Z. (2)

By the above Lemma, any x ∈ Z that satisfies ax≡ b (mod m) will also be of the form (2).

Now we will show that there are only d distinct solutions (modulo m) for ax ≡ b (mod m) of
the form (2). Two solutions,

x1 = x0 + k1
m
d

x2 = x0 + k2
m
d
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are the same in modulo m if and only if

x0 + k1
m
d
≡ x0 + k2

m
d

(mod m) ⇐⇒ (k1− k2)
m
d
≡ 0 (mod m),

⇐⇒ (k1− k2)
m
d
= qm for some q ∈ Z,

⇐⇒ (k1− k2)m = qmd,

⇐⇒ k1− k2 = qd.

The above argument proved that two solutions with the form (2) are equal (mod m) if and
only if k1 ≡ k2 (mod d). Without loss of generality, we can construct solutions by letting
k ∈ {0,1, . . . ,d−1}. To be very specific, the d distinct solutions of ax≡ b (mod m) are

x≡ x0 + k
m
d

(mod m), k = 0,1, . . . ,d−1.

(c) Since gcd(77,42)= 7 and 35≡ 0 (mod 7), we can find a unique solution from (77/7)x≡ 35/7
(mod 42/7):

11x≡ 5 (mod 6)
−1x≡−1 (mod 6) (because 11≡−1 (mod 6) and 5≡−1 (mod 6))

x≡ 1 (mod 6)

The solution of (77/7)x ≡ 35/7 (mod 42/7) is x ≡ 1 (mod 6). Based on Part (b), the solu-
tions of 77x≡ 35 (mod 42) are

x≡ 1+6k (mod 42), k = 0,1, . . . ,6.

4 Nontrivial Modular Solutions
(a) What are all the possible squares modulo 4? Show that any solution to a2+b2 ≡ 3c2 (mod 4)

must satisfy a2 ≡ b2 ≡ c2 ≡ 0 (mod 4).

(b) Using part (a), prove that a2 + b2 = 3c2 has no non-trivial solutions (a,b,c) in the integers.
In other words, there are no integers a, b, and c that satisfy this equation, except the trivial
solution a = b = c = 0.

[Hint: Consider some nontrivial solution (a,b,c) with the smallest positive value for a (why
are we allowed to consider this?). Then arrive at a contradiction by finding another solution
(a′,b′,c′) with a′ < a.]

Solution:
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(a) Checking by hand, the only squares modulo 4 are 0 and 1 (for example, 32 ≡ 1 (mod 4)).
Considering the equation a2 + b2 ≡ 3c2 (mod 4), this means that a2 + b2 (mod 4) can only
be one of the following: 0, 1, 2.

None of these possibilities is consistent with c2≡ 1 (mod 4), so we must have c2≡ 0 (mod 4).
This forces a2 ≡ b2 ≡ 0 (mod 4), so a2,b2,c2 are all divisible by 4.

(b) Notice that if (a,b,c) is a solution to a2 + b2 = 3c2, then (−a,b,c) is also a solution. Let’s
assume that some nontrivial solution exists, and (a,b,c) is the solution with the smallest pos-
itive value of a. This "smallest" solution must exist by the well-ordering principle. It’s not
meaningful to consider the solution with the smallest overall value of a because of our first
observation that −a is also part of another solution.

If (a,b,c) is a solution to the original equation, then this is also a solution to

a2 +b2 ≡ 3c2 (mod 4).

From Part (a), we know that a2,b2,c2 are all divisible by 4, which in turn means that a,b,c are
all divisible by 2. If we divide the entire original equation by 4, we see that(a

2

)2
+
(b

2

)2
= 3

(c
2

)2
.

Indeed, (a/2,b/2,c/2) is another solution with a smaller positive value of a where all the
values are integers. We’ve reached a contradiction to our initial assumption, which was that
(a,b,c) was the solution with the least positive value of a. Thus, there does not exist a nontriv-
ial solution to a2 +b2 = 3c2.
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