CS 70 Discrete Mathematics and Proloa]oility Theory
Fall 2018 Alistair Sinclair and Yun Song HW 11

1 Random Cuckoo Hashing

Cuckoo birds are parasitic beasts. They are known for hijacking the nests of other bird species and
evicting the eggs already inside. Cuckoo hashing is inspired by this behavior. In cuckoo hashing,
when we get a collision, the element that was already there gets evicted and rehashed.

We study a simple (but ineffective, as we’ll see) version of cuckoo hashing, where all hashes are
random. Let’s say we want to hash n pieces of data Dy,D,,...,D, into n possible hash buckets
labeled 1,...,n. We hash the Dy,...,D, in that order. When hashing D;, we assign it a random
bucket chosen uniformly from 1, ..., n. If there is no collision, then we place D; into that bucket. If
there is a collision with some other D;, we evict D; and assign it another random bucket uniformly
from 1,...,n. (Itis possible that D; gets assigned back to the bucket it was just evicted from!) We
again perform the eviction step if we get another collision. We keep doing this until there is no
more collision, and we then introduce the next piece of data, D; | to the hash table.

(a) What is the probability that there are no collisions over the entire process of hashing Dy, ...,D,
to buckets 1,...,n? What value does the probability tend towards as n grows very large?

(b) Assume we have already hashed Dy,...,D,_1, and they each occupy their own bucket. We
now introduce D, into our hash table. What is the expected number of collisions that we’ll
see while hashing D,? (Hint: What happens when we hash D,, and get a collision, so we evict
some other D; and have to hash D;? Are we at a situation that we’ve seen before?)

Solution:

(a) When hashing D;, there are (n —i+ 1) empty buckets, as (i — 1) of them are already occupied
by Dy,...,D;_1. If we want no collisions over this entire hashing process, we must choose an
empty bucket on the first go for each D;. This gives:

[P[no collisions] = nonl L n—;
n n non
To understand what happens as n grows very large, we can upper bound the probability as
follows:
[P[no collisions] = non-l 1 <1 11 1
n n n n o n

We are upper bounding each term in the product above by 1, except the very last term, which

we leave as % When n is large, this upper bound goes to 0, so P[no collisions] will also tend

to 0.
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(b) Let C be the number of collisions experienced when hashing a single datum into a table with
(n— 1) buckets already populated. (Note that we don’t specify that we hash D,, in particular
when defining C.)

First, it is possible that we end with O collisions. This happens with probability % Otherwise,
we get a collision, and we have to evict some other datum D;. Now, we are back in the original
situation; the number of collisions experienced after re-hashing D; is also C because we are
again in the situation of introducing a single datum into a table with (n — 1) buckets already
populated. However, we do need to count the fact that we already had one collision—the one
that evicted D;. This gives us:

n—1

E[C] =0+ + (Efc] +1)- "

Solving for E[C] above, we get an expected (n— 1) collisions.

Remark: 1t 1s also perfectly valid to use an infinite sum based solution.

2 Markov's Inequality and Che]oyshevjs Inequahty

A random variable X has variance var(X) = 9 and expectation E[X] = 2. Furthermore, the value
of X is never greater than 10. Given this information, provide either a proof or a counterexample
for the following statements.

() E[x?] =13.

(b) PIX < 1] <8/9.
(c) PX > 6] <9/16.
(d) P[X > 6] <9/32.

Solution:

(a) TRUE. Since 9 = var(X) = E[X?] — E[X]* = E[X%] — 22, we have E[X%] = 9+4 = 13.

(b) TRUE. Let Y = 10— X. Since X is never exceeds 10, Y is a non-negative random variable. By
Markov’s inequality,

PO—X >a] =Pl > a) < 2 _ EIO=X] _ 8
a a
Setting a =9, we get P[X < 1] =P[10—-X >9] <8/9.

(c) TRUE. Chebyshev’s inequality says P[|X — E[X]| > a] < var(X)/a?. If we set a = 4, we have
9
PllX —-2|>4| < —.
2> 4 <

Now we observe that P[X > 6] < P[|X — 2| > 4], because the event X > 6 is a subset of the
event |[X —2| > 4.
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(d) FALSE. Construct a random variable X that satisfies the conditions in the question but does
not have an equal chance of being less than -2 or greater than 6. A simple example would
be a random variable that takes on 2 values, where P[X = a| = p,P[X =b] =1 — p. The
expectation must be 2, so we have pa+ (1 — p)b = 2. The variance is 9, so E[X 2} =13 and
pa* + (1 — p)b* = 13. Solving for a and b. One example is P[X = 0] =9/13,P[X = 13/2] =
4/13.

J Easy As

A friend tells you about a course called “Laziness in Modern Society” that requires almost no work.
You hope to take this course next semester to give yourself a well-deserved break after working
hard in CS 70. At the first lecture, the professor announces that grades will depend only on two
homework assignments. Homework 1 will consist of three questions, each worth 10 points, and
Homework 2 will consist of four questions, also each worth 10 points. He will give an A to any
student who gets at least 60 of the possible 70 points.

However, speaking with the professor in office hours you hear some very disturbing news. He tells
you that, in the spirit of the class, the GSIs are very lazy, and to save time the grading will be
done as follows. For each student’s Homework 1, the GSIs will choose an integer randomly from
a distribution with mean p = 5 and variance 6% = 1. They’ll mark each of the three questions
with that score. To grade Homework 2, they’ll again choose a random number from the same
distribution, independently of the first number, and will mark all four questions with that score.

If you take the class, what will the mean and variance of your total class score be? Use Chebyshev’s
inequality to conclude that you have less than a 5% chance of getting an A when the grades are
randomly chosen this way.

Solution:

Let X be the total number of points you receive in the class. Then X = X| + X, where X; is the
number points received on Homework 1 and X, is the number of points received on Homework 2.
Your Homework 1 score is generated as X; = 3Y;, where the r.v. Y| represents the integer that the
GSI chose when grading it. Similarly, X, = 4Y,. The problem statement tells us that Y} and Y, are
independent, both with mean 5 and variance 1, so E[Y;] = E[Y»] =5 and var(Y;) = var(}2) = 1.
Thus,

EX] =E[X]|+E[X;] =3E[Y]+4E[Y>] =35,
var(X) = var(X)) + var(Xp) = 9var(Y;) + 16 var(Y,) = 25.

Using Chebyshev’s Inequality, we get

var(X) 1
252 25

Unfortunately, any student will have at most a 4% chance of getting an A.

P[X > 60] < P[|X — 35| > 25] <
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Note that although we calculated a bound for IP[|X — 35| > 25], which is the probability that you
will get 60 or above or 10 or below, we cannot divide by 2 to refine our bound unless the distribution
is symmetric about its mean. In this case, the distribution is not symmetric.

4 Confidence Interval Introduction

We observe a random variable X which has mean u and standard deviation ¢ € (0,0). Assume
that the mean u is unknown, but ¢ is known.

We would like to give a 95% confidence interval for the unknown mean u. In other words, we
want to give a random interval (a,b) (it is random because it depends on the random observation
X) such that the probability that u lies in (a,b) is at least 95%.

We will use a confidence interval of the form (X —¢&,X + €), where € > 0 is the width of the
confidence interval. When € is smaller, it means that the confidence interval is narrower, i.e., we
are giving a more precise estimate of (L.

(a) Using Chebyshev’s Inequality, calculate an upper bound on P{|X — u| > €}.

(b) Explain why P{|X — u| < €} is the same as P{u € (X —&,X +¢€)}.

(c) Using the previous two parts, choose the width of the confidence interval € to be large enough
sothat P{u € (X —&,X +¢€)} is guaranteed to exceed 95%.
[Note: Your confidence interval is allowed to depend on X, which is observed, and ¢, which

is known. Your confidence interval is not allowed to depend on tt, which is unknown.]

(d) The previous three parts dealt with the case when you observe one sample X. Now, let n be a
positive integer and let X1,..., X, be 1.1.d. samples, each with mean y and standard deviation
o € (0,00). As before, assume that u is unknown but ¢ is known.

Here, a good estimator for u is the sample mean X := n~! ? ,X;. Calculate the mean and

variance of X.

(e) We will now use a confidence interval of the form (X — &, X + €) where € > 0 again represents
the width of the confidence interval. Imitate the steps of (a) through (c) to choose the width &
to be large enough so that P{u € (X —&,X +¢€)} is guaranteed to exceed 95%.

To check your answer, your confidence interval should be smaller when n is larger. Intuitively,
if you collect more samples, then you should be able to give a more precise estimate of u.

Solution:

(a) Since E[X] = u and varX = o2, then by Chebyshev’s Inequality,

var X o2

PX—pl > e} < = T
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(b) Note that |[X —u| < eifandonly if —e <X —u < g, ifand only if u — & < X < u+ €. However,
the first inequality says that 4 < X + € and the second inequality says that u > X — €, that is,
X —€e < U < X+ ¢, which is the same thing as saying u € (X —&,X +¢€). So, the events
{|IX—u| <€} and {u € (X —&,X +¢€)} are identical.

(c) We want P{u € (X —¢&,X +¢€)} > 0.95, which is equivalent to
P{X—u|>e}=1-P{IX—ul<e}=1-P{ue(X—eX+¢)} <0.05.

However, we have the bound P{|X — | > &} < 62 /€2, so we just need to choose € big enough
so that 0‘2/.5‘2 < 0.05. To do this, we want €2 > 2002, or € > /200 ~ 4.47c. Our confidence
interval is therefore (X —4.470,X +4.470).

(d) For the mean, use linearity of expectation. We have

_ 1 & 1 & 1 &
Ef]=E| ) X| = LEX = Y u= =g
ni= ni= iz
For the variance, recall two facts. One is that for a constant ¢, the scaling of the variance
is var(cX) = c>varX. The second fact is that Xi,..., X, are independent, so they are pair-

wise uncorrelated, that is, for any distinct 7, j € {1,...,n}, cov(X;,X;) = 0; this implies that
var(}! | X;) = YL, varX;. Using these facts,

Var}?zvar<%i_zn‘ix,~> VM(ZX) :izi: lzi(fz:%-nczzc—.

(e) By Chebyshev’s Inequality,

X
PR —pze} < T ==

ne?’

We want 62/(1’182) < 0.05, and to do this, we choose €2 > 2062/n, or € >+/200//n.
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