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1 Introduction

Now that you have learned about mathematical induction to prove statements
of the form ∀n ∈ N, P (n), one question you may have is: “can we use
induction to prove statements for any other sets besides N?” To answer this
question, we must examine what properties of N we are exploiting when we
write an inductive proof.

The core of the proof by induction is the inductive step, which is the
statement ∀n ∈ N, [P (n) =⇒ P (n + 1)]. We can visualize the proof by
imagining that we have a sequence of propositions P (0), P (1), P (2), . . . , and
the truth of each proposition implies the truth of the next proposition “in
the line”. Then, proving a base case, such as P (0), proves the truth of
all subsequent propositions, as if we are knocking down an infinite line of
dominoes by knocking over the first one.

From the preceding discussion, it may appear that the method of induction
can be carried out if we can arrange the propositions in a “line”. For
instance, the real numbers have a canonical ordering, so perhaps we can prove
statements of the form ∀x ∈ R, P (x) in a similar fashion. However, two
issues quickly arise:

1. There is no analog of the base case for real numbers. The real numbers
are a doubly infinite line, and therefore has no beginning.

2. We can ignore the previous issue by focusing our attention on statements
of the form “for all x ≥ 0, . . . ”. The crucial difficulty, however, lies in
the use of the word next when we seek to show that each proposition
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implies the truth of the next proposition in line. Indeed, how can we
move from one real number x to the “next” real number? If we try
jumping from x to x + 1, then we miss all of the real numbers in the
interval (x, x + 1). Even if we take a smaller “step size”, no matter
what positive ε we choose, jumping from x to x + ε will still miss many
real numbers along the way.

The conclusion of the second point is that there is no way to move from a
real number to a larger real number without skipping real numbers along the
way. However, we do not have to give up hope. Instead, we can ask if there
exists another ordering on R which makes induction possible.

2 The Well Ordering Principle

2.1 Total Orderings, Well Orderings

This leads us to define precisely what we mean by an ordering. Given a set S,
a total ordering (sometimes called a linear ordering) . on S is a subset
of S ×S satisfying some properties. If the pair (x, y) is in the ordering S ×S,
then we write x . y. The properties we desire are:

• (Totality) For all x, y ∈ S, either x . y or y . x or both.

• (Reflexivity) For all x ∈ S, x . x.

• (Transitivity) For all x, y, z ∈ S, if x . y and y . z, then x . z.

• (Antisymmetry) For all x, y ∈ S, if x . y and y . x, then x = y.

The totality condition ensures that all pairs of elements can be compared
(this property is what leads us to call it a total ordering, as opposed to a
partial ordering). The reflexivity condition is a convention (when we speak of
orderings, we choose to speak of “less than or equal to”, rather than “strictly
less than”). The transitivity condition is natural in order for the ordering to
look like a “line”, and the antisymmetry condition ensures that we cannot
have two distinct elements both be larger than each other.

It turns out that these properties are not enough to allow us to perform
induction. We say that . is a well ordering1 if . is a total ordering, and
in addition, the following property holds:

1Excuse the grammar.
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Well Ordering Property: For any non-empty subset R ⊆ S,
R has a least element.

A least element of R is an element x ∈ R such that x . y for all y ∈ R.

Example 1. The usual orderings on N, Z, Q, and R are total orderings.

Example 2. The usual ordering on Z is not a well ordering. For example, Z
itself does not have a least element.

Example 3. The usual ordering on R is not a well ordering, because it
fails to have a least element. However, even if we restrict ourselves to the
non-negative real numbers R+ := {x ∈ R : x ≥ 0}, we still do not have a well
ordering. Indeed, the set {x ∈ R : x > 0} of strictly positive real numbers is
a non-empty subset of R+ that fails to have a least element.

Example 4. Any total ordering on a finite set is a well ordering. (See if you
can prove this.)

2.2 Well Ordering and Induction for N
Our next example is actually a theorem.

Theorem 1 (Well Ordering Property for N). N is well ordered under the
usual ordering on N.

Before we proceed with the proof, it is worth pausing for a moment to
think about how you would approach this proof. Since the statement is
about the natural numbers, it is natural (excuse the pun) to proceed by
induction—but on what? The statement to prove is that for all non-empty
R ⊆ N, the set R has a least element. It is tempting to try to prove the
statement by induction on the size of the set R, but this approach does not
work. Specifically, induction can prove the statement

∀n ∈ N
(
[(|R| = n) ∧ (R ⊆ S) ∧ (R 6= ∅)] =⇒ ∃x ∈ R ∀y ∈ R x ≤ y

)
.

(Exercise: Decipher the above statement and explain why it does not imply
the existence of a least element if R is an infinite subset of N.)
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Proof of Theorem 1. We prove the following statement by induction:

∀n ∈ N ∀R ⊆ S
(
[(R 6= ∅) ∧ (∃k ∈ R, k ≤ n)] =⇒ ∃x ∈ R ∀y ∈ R x ≤ y

)
.

That is, for all n ∈ N and all non-empty subsets R ⊆ S, if R contains an
element which is at most n, then R has a least element.

Base case: If 0 ∈ R, then clearly 0 is the least element of R.
Inductive hypothesis : Let n ∈ N. Assume that if R is a non-empty subset

of N which contains an element which is at most n, then R has a least element.
Inductive step: Suppose that R contains an element k which is at most

n + 1. If R contains an element which is at most n, then by the inductive
hypothesis, we are done. Otherwise, k = n + 1, and since R does not contain
any of the elements 0, 1, . . . , n, then n + 1 is the least element of R.

In fact, the Well Ordering Property for N is equivalent to the principle of
induction, in the sense that if we assume that N is well ordered under ≤, then
the principle of induction holds for N. This is a bit more subtle to describe,
since the set N is essentially defined by induction. We can formalize this by
saying N is the smallest set S with the following property:

Inductive Property: For all subsets R ⊆ S, if 0 ∈ R and for
any n ∈ R we have n + 1 ∈ R, then R = S.

When we write a proof by induction, we are really using the Inductive
Property for N. To see this, for a statement ∀n ∈ N, P (n), define the
set R := {n ∈ N : P (n) holds}. In a proof by induction, we prove the
base case P (0), which shows that 0 ∈ R, and we prove the inductive step
∀n ∈ N, [P (n) =⇒ P (n + 1)], which shows that for any n ∈ R, n + 1 ∈ R
as well. By the Inductive Property for N, we conclude that R = N, i.e., the
statement P (n) holds for all n ∈ N.

Theorem 2. Assuming that N is well ordered under ≤, we can prove that N
has the Inductive Property.

Proof. Let R ⊆ N contain 0 and have the property that for any n ∈ R, we
also have n + 1 ∈ R. We must show that R = N.

Consider the set N \ R := {n ∈ N : n /∈ R}. If N \ R is non-empty, then
by the assumption of well ordering, N \R has a least element n0. We know
that n0 6= 0 because 0 ∈ R. So, n0 − 1 ∈ N, and since n0 is the least element
of N \R, then n0 − 1 must not be in N \R, i.e., n0 − 1 ∈ R. This contradicts
the fact that if n0 − 1 ∈ R, then n0 ∈ R as well. Therefore, N \R is empty,
i.e., R = N.
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2.3 Applications of the Well Ordering Property for N
The Well Ordering Property for N allows us to write some inductive proofs
more conveniently. To illustrate the idea, we will prove two theorems. The
first theorem is a theorem we have already proven using induction. Compare
and contrast the following proof with the proof you have already seen.

Theorem 3. For all n ∈ N,
∑n

i=0 i = n(n + 1)/2.

Proof. If the statement of the theorem is false, then by the Well Ordering
Property for N there exists a least n0 ∈ N such that

∑n0

i=0 i 6= n0(n0 + 1)/2.
Since the statement of the theorem holds trivially when n = 0, we know that
n0 6= 0. Because n0 is the least element for which the theorem fails, we know
that

∑n0−1
i=0 i = (n0 − 1)n0/2. However,

n0∑
i=0

i =

n0−1∑
i=0

i + n0 =
(n0 − 1)n0

2
+ n0 =

n0(n0 + 1)

2
,

which is a contradiction. Hence, the theorem is true.

The proof we have just given is essentially the same as the argument in
the ordinary proof by induction, but using the Well Ordering Principle for N
makes the proof more indirect and harder to read. The lesson here is that the
Well Ordering Principle for N can be used to write proofs which are equivalent
to proofs by induction, but they are not necessarily easier.

On the other hand, the Well Ordering Principle for N provides an elegant
proof of the following theorem, which will be useful in our study of modular
arithmetic.

Theorem 4 (Division Algorithm). For any a, b ∈ Z, where b > 0, there exist
unique integers q ∈ Z and r ∈ {0, 1, . . . , b− 1} such that a = qb + r.

Proof. Consider the set R = {a− qb : q ∈ Z, a− qb ≥ 0}. Then, R ⊆ N and
by choosing q to be a negative integer, we can see that R 6= ∅. By the Well
Ordering Principle for N, R has a least element r.

Since r ∈ R, we can write a = qb + r for some q ∈ Z. We claim that
r ∈ {0, 1, . . . , b−1}. Indeed, if r ≥ b, then a− (q+1)b ≥ 0 so a− (q+1)b ∈ R,
and a− (q + 1)b is smaller than a− qb = r, which contradicts the fact that r
is the least element of R.
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Finally, for uniqueness, suppose that a = q1b + r1 = q2b + r2 where
q1, q2 ∈ Z and r1, r2 ∈ {0, 1, . . . , b − 1}. We may assume (without loss of
generality) that r2 − r1 ≥ 0. Then, subtracting, we have (q1 − q2)b = r2 − r1,
where r2− r1 ∈ {0, 1, . . . , b− 1}. Since (q1− q2)b is divisible by b, then r2− r1
is divisible by b, from which it follows that r2 − r1 = 0, i.e., r1 = r2. So,
(q1 − q2)b = 0, and dividing by b, we get q1 = q2 as well.

3 What Sets Are Well Ordered? (Optional)

This section is optional. Read on if you are interested.
To connect the concept of well orderings back to our discussion of induction,

observe that well orderings solve the problem that we encountered at the
beginning of this note, namely that for sets such as R, we do not know how
to reach the “next” element. If R has a well ordering ., then we can carry
out the following procedure:

• Since R is well ordered under ., there is a least element x0. We add x0

to a set X of elements considered thus far.

• As long as X 6= R, then R \X is non-empty, so it has a least element x.
We can add x to the set X and keep going.

The full details are more complicated than the simplified version we have
presented, but the essential idea is there. If we have a well ordering on a
set, then we can perform a version of induction on the set, called transfinite
induction. However, any well ordering of R will be very bizarre; it will
certainly not resemble anything like the usual ordering ≤ on R.

In fact, since any well ordering on R will be incompatible with the usual
ordering on R, then any proof by transfinite induction on R will only use the
set-theoretic nature of R. That is, the proof will only view R as a set and
ignore the other properties of R that make R familiar to us (e.g., the property
that real numbers can be added and multiplied). Consequently, transfinite
induction is typically only useful for proving statements in set theory (as
opposed to, e.g., calculus).

Finally, there is one important question we have not yet answered: which
sets can be well ordered? According to the standard axioms of set theory2,

2The standard axioms are called ZFC. See: https://en.wikipedia.org/wiki/

Zermelo%E2%80%93Fraenkel_set_theory.

6

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory


every set can be well ordered. The proof is highly non-constructive, however,
so no one has written down an explicit well ordering on R. “Sure,” you
may say, “the existence of a well ordering on R may follow from the axioms,
but in what sense does the well ordering actually exist if we cannot write it
down?” In fact, there are many mathematicians who study logic, set theory,
and metamathematics (roughly speaking, the study of the foundations of
mathematics). If these sorts of questions interest you, then you may want to
give some courses in these areas a try.
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