Refresh: Counting.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
- Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
- Order doesn’t matter. \(k \) stars \(n-1 \) bars.
- Typically: \(\binom{n+k-1}{k} \) or \(\binom{n+k-1}{n-1} \).

Inclusion/Exclusion: two sets of objects.
- Add number of each and then subtract intersection of sets.
- Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
- Pascal’s Triangle Example: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \).
- RHS: Number of subsets of \(n+1 \) items size \(k \).
- LHS: \(\binom{n}{k-1} \) counts subsets of \(n+1 \) items with first item.
- \(\binom{n}{k} \) counts subsets of \(n+1 \) items without first item.
- Disjoint – so add!
CS70: On to probability.

Modeling Uncertainty: Probability Space

1. Key Points
2. Random Experiments
3. Probability Space
Key Points

▶ Uncertainty does not mean “nothing is known”
▶ How to best make decisions under uncertainty?
 ▶ Buy stocks
 ▶ Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 ▶ Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
▶ How to best use ‘artificial’ uncertainty?
 ▶ Play games of chance
 ▶ Design randomized algorithms.
▶ Probability
 ▶ Models knowledge about uncertainty
 ▶ Optimizes use of knowledge to make decisions
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability:
Precise, unambiguous, simple(!) way to reason about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T)
 (One flip yields either ‘heads’ or ‘tails’.)
- Likelihoods: $H : 50\%$ and $T : 50\%$
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

▶ Single coin flip: 50% chance of ‘tails’ [subjectivist]
 Willingness to bet on the outcome of a single flip

▶ Many coin flips: About half yield ‘tails’ [frequentist]
 Makes sense for many flips

▶ Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: $Pr[H] = 0.5, Pr[T] = 0.5$.

[Diagram showing a coin flip with outcomes H and T, each with a probability of 0.5]
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
- Frequentist Interpretation:

 Flip many times \Rightarrow Fraction $1 - p$ of tails

- Question: How can one figure out p? Flip many times

- Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin

Flip an **unfair** (biased, loaded) coin: model

Physical Experiment

Probability Model

\[\Omega \]
\[H \circ p \]
\[T \circ (1 - p) \]
Flip Two Fair Coins

- Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods: $1/4$ each.
Flip Glued Coins

Flips two coins glued together side by side:

- **Possible outcomes:** $\{HT, TH\}$.
- **Likelihoods:** $HT : 0.5$, $TH : 0.5$.
- **Note:** Coins are glued so that they show different faces.
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \{HH, HT, TH, TT\}.
- Likelihoods: HH : 0.4, HT : 0.1, TH : 0.1, TT : 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
- Spring-attached coins: [2];
Flipping Two Coins

Important remarks:

▶ Each outcome describes the two coins.
▶ E.g., HT is one outcome of each of the above experiments.
▶ **Wrong** to think that outcomes are $\{H, T\}$ and that one picks twice from that set.
▶ Indeed, this viewpoint misses the relationship between the two flips.
▶ Each $\omega \in \Omega$ describes one outcome of the complete experiment.
▶ Ω and the probabilities specify the random experiment.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.
- $A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.
- Likelihoods: $1/2^n$ each.
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes: \(\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\} \).
- Likelihoods: \(\frac{1}{36} \) for each.
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}; \ |\Omega| = 4$;
 (c) $\Omega = \{A♠ A♦ A♣ A♥ K♠, A♠ A♦ A♣ A♥ Q♠, \ldots\}$
 \(|\Omega| = (\binom{52}{5})\).

3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0, 1]$.
 (a) $Pr[H] = p, Pr[T] = 1 - p$ for some $p \in [0, 1]$;
 (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
 (c) $Pr[A♠ A♦ A♣ A♥ K♠] = \ldots = 1 / (\binom{52}{5})$
Probability Space: formalism.

\(\Omega \) is the **sample space**.
\(\omega \in \Omega \) is a **sample point**. (Also called an **outcome**.)
Sample point \(\omega \) has a probability \(Pr[\omega] \) where

- \(0 \leq Pr[\omega] \leq 1 \);
- \(\sum_{\omega \in \Omega} Pr[\omega] = 1 \).
Probability Space: Formalism.

In a **uniform probability space** each outcome \(\omega \) is equally probable:
\[
Pr[\omega] = \frac{1}{|\Omega|} \quad \text{for all } \omega \in \Omega.
\]

Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.
Probability Space: Formalism

Simplest physical model of a **uniform** probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

$$\Omega = \{\text{white, red, yellow, grey, purple, blue, maroon, green}\}$$

$$Pr[\text{blue}] = \frac{1}{8}.$$
Probability Space: Formalism

Simplest physical model of a **non-uniform** probability space:

\[Ω = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]

Note: Probabilities are restricted to rational numbers: \(\frac{N_k}{N} \).
Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

$$\Omega = \{1, 2, 3, \ldots, N\}, Pr[\omega] = p_\omega.$$
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it's wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each. This is not captured by ‘picking two outcomes.’
Summary of Probability Basics

1. Random Experiment

2. Probability Space: $\Omega; Pr[\omega] \in [0, 1]; \sum_\omega Pr[\omega] = 1$.

3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

Modeling Uncertainty: Probability Space
Onwards in Probability.

Events, Conditional Probability, Independence, Bayes’ Rule
Today: Events.
Probability Basics Review

Setup:

▶ Random Experiment.
 Flip a fair coin twice.

▶ Probability Space.

 ▶ **Sample Space:** Set of outcomes, Ω.
 $\Omega = \{HH, HT, TH, TT\}$
 (Note: Not $\Omega = \{H, T\}$ with two picks!)

 ▶ **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$.
 $Pr[HH] = \cdots = Pr[TT] = 1/4$
 1. $0 \leq Pr[\omega] \leq 1$.
 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1.$
Set notation review

- **Figure: Two events**
- **Figure: Union (or)**
- **Figure: Difference (A, not B)**
- **Figure: Complement (not)**
- **Figure: Intersection (and)**
- **Figure: Symmetric difference (only one)**
Probability of exactly one ‘heads’ in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one ‘heads’: \(HT, TH. \)

This leads to a definition!

Definition:

- An **event**, \(E \), is a subset of outcomes: \(E \subset \Omega. \)

- The **probability** of \(E \) is defined as \(Pr[E] = \sum_{\omega \in E} Pr[\omega]. \)
Event: Example

Physical experiment

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]
\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]

\[E = \{ \text{Red, Green} \} \Rightarrow Pr[E] = \frac{3 + 4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[\text{Red}] + Pr[\text{Green}]. \]
Probability of exactly one heads in two coin flips?

Sample Space, \(\Omega = \{ HH, HT, TH, TT \} \).

Uniform probability space: \(Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4} \).

Event, \(E \), “exactly one heads”: \(\{ TH, HT \} \).

\[
Pr[E] = \sum_{\omega \in E} Pr[\omega] = \frac{|E|}{|\Omega|} = \frac{2}{4} = \frac{1}{2}
\]
Roll a red and a blue die.

\[
Pr[\text{Sum to 7}] = \frac{6}{36} \quad Pr[\text{Sum to 10}] = \frac{3}{36}
\]
Example: 20 coin tosses.

20 coin tosses

Sample space: \(\Omega = \) set of 20 fair coin tosses.
\(\Omega = \{ T, H \}^{20} \equiv \{ 0, 1 \}^{20}; \quad |\Omega| = 2^{20}. \)

What is more likely?

\(\omega_1 := (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), \) or
\(\omega_2 := (1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0)? \)

Answer: Both are equally likely: \(Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}. \)

What is more likely?

\((E_1) \) Twenty Hs out of twenty, or
\((E_2) \) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. \(\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}. \)

\(|E_2| = \binom{20}{10} = 184,756. \)
Probability of \(n \) heads in 100 coin tosses.

\[
\Omega = \{H, T\}^{100}; \quad |\Omega| = 2^{100}.
\]

Event \(E_n = \text{‘} n \text{ heads’} \); \(|E_n| = \binom{100}{n} \)

\[p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}} \]

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.
Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega =$ set of 100 coin tosses $= \{H, T\}^{100}$.
$|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event $E =$ “100 coin tosses with exactly 50 heads”

$|E|$?

Choose 50 positions out of 100 to be heads.
$|E| = \binom{100}{50}$.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$
Calculation.

Stirling formula (for large n):

\[
n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.
\]

\[
\binom{2n}{n} \approx \frac{\sqrt{4\pi n(2n/e)^{2n}}}{[\sqrt{2\pi n(n/e)^n}]^2} \approx \frac{4^n}{\sqrt{\pi n}}.
\]

\[
Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.
\]
Exactly 50 heads in 100 coin tosses.

\[Pr[n \text{Hs out of } 2n] = \frac{\binom{2n}{n}}{2^{2n}} \]
Summary.

1. Random Experiment

2. Probability Space: $\Omega; Pr[\omega] \in [0,1]; \sum_\omega Pr[\omega] = 1$.

3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

4. Event: “subset of outcomes.” $A \subseteq \Omega$. $Pr[A] = \sum_{w \in A} Pr[\omega]$

5. Some calculations.