Random Variables

Questions about outcomes ...

Experiment: roll two dice.
Sample Space: \{(1,1),(1,2), \ldots ,(6,6)\} = \{1, \ldots ,6\}^2
How many pips?

Experiment: flip 100 coins.
Sample Space: \{\text{HHH} \ldots \text{H}, \text{THH} \ldots \text{H}, \ldots , \text{TTT} \ldots \text{T}\}
How many heads in 100 coin tosses?

Experiment: choose a random student in cs70.
Sample Space: \{Adam, Jin, Bing ..., Angeline\}
What midterm score?

Experiment: hand back assignments to 3 students at random.
Sample Space: \{123, 132, 213, 231, 312, 321\}
How many students get back their own assignment?

In each scenario, each outcome gives a number.
The number is a (known) function of the outcome.

- **Sample Space**: Set of outcomes, \(\Omega\).
- **Probability**: \(Pr[\omega]\) for all \(\omega \in \Omega\).
 - \(0 \leq Pr[\omega] \leq 1\).
 - \(\sum_{\omega \in \Omega} Pr[\omega] = 1\).
- **Event**: \(A \subseteq \Omega\). \(Pr[A] = \sum_{\omega \in A} Pr[\omega]\).
 - Inclusion/Exclusion: \(Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]\).
 - Simple Total Probability: \(Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]\).
 - Complement: \(Pr[\overline{A}] = 1 - Pr[A]\).
 - Union Bound. Total Probability.
 - **Conditional Probability**: \(Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}\).
 - **Bayes’ Rule**: \(Pr[A_i|B] = \frac{Pr[A_i]Pr[B|A_i]}{\sum_{i} Pr[A_i]Pr[B|A_i]}\).
 - **Product Rule**: \(Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}]\).
 - **Total Probability/Product**: \(Pr[B] = Pr[B|A]Pr[A] + Pr[B|\overline{A}]Pr[\overline{A}]\).

Random Variables

A random variable, \(X\), for an experiment with sample space \(\Omega\) is a function \(X : \Omega \rightarrow \mathbb{R}\).
Thus, \(X(\cdot)\) assigns a real number \(X(\omega)\) to each \(\omega \in \Omega\).

Function \(X(\cdot)\) defined on outcomes \(\Omega\).
Function \(X(\cdot)\) is not random, not a variable!
What varies at random (among experiments)? The outcome!
Note: Random variable induces partition:
\(A_y = \{\omega \in \Omega : X(\omega) = y\} = X^{-1}(y)\)

Example 1 of Random Variable

Experiment: roll two dice.
Sample Space: \{(1,1),(1,2), \ldots ,(6,6)\} = \{1, \ldots ,6\}^2
Random Variable \(X\): number of pips.
\(X(1,1) = 2\)
\(X(1,2) = 3\),
\(\vdots\)
\(X(6,6) = 12\)
\(X(a,b) = a+b, (a,b) \in \Omega\).
Example 2 of Random Variable

Experiment: flip three coins
Sample Space: \{HHH, THH, HTH, TTH, HHT, THT, HTT, TTT\}
Winnings: if win 1 on heads, lose 1 on tails. \(X\)
\[
X(\text{HHH}) = 3 \quad X(\text{THH}) = 1 \quad X(\text{HTH}) = 1 \quad X(\text{TTH}) = -1
\]
\[
X(\text{HHT}) = 1 \quad X(\text{THT}) = -1 \quad X(\text{HTT}) = -1 \quad X(\text{TTT}) = -3
\]

Handing back assignments

Experiment: hand back assignments to 3 students at random.
Sample Space: \(\Omega = \{123, 132, 213, 231, 312, 321\}\)
How many students get back their own assignment?
Random Variable: values of \(X(\omega)\): \{3, 1, 1, 0, 0, 1\}
Distribution:
\[
X = \begin{cases} 0, \text{ w.p. } 1/3 \\ 1, \text{ w.p. } 1/2 \\ 3, \text{ w.p. } 1/6 \end{cases}
\]

Number of pips in two dice.

“What is the likelihood of getting \(n\) pips?”
\[
\Pr[X = 10] = \frac{3}{36} = \Pr[X^{-1}(10)]; \Pr[X = 8] = \frac{5}{36} = \Pr[X^{-1}(8)].
\]

Distribution

The probability of \(X\) taking on a value \(a\).
Definition: The distribution of a random variable \(X\), is \(\{(a, \Pr[X = a]) : a \in A\}\), where \(A\) is the range of \(X\).
\[
\Pr[X = a] := \Pr[X^{-1}(a)] \text{ where } X^{-1}(a) := \{\omega | X(\omega) = a\}.
\]

Flip three coins

Experiment: flip three coins
Sample Space: \{HHH, THH, HTH, TTH, HHT, THT, HTT, TTT\}
Winnings: if win 1 on heads, lose 1 on tails. \(X\)
\[
X(\text{HHH}) = 3 \quad X(\text{THH}) = 1 \quad X(\text{HTH}) = 1 \quad X(\text{TTH}) = -1
\]
\[
X(\text{HHT}) = 1 \quad X(\text{THT}) = -1 \quad X(\text{HTT}) = -1 \quad X(\text{TTT}) = -3
\]

Number of pips.

Experiment: roll two dice.
Sample Space: \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}
Winnings: if win 1 on heads, lose 1 on tails. \(X\)
\[
X = \begin{cases} -3, \text{ w. p. } 1/8 \\ -1, \text{ w. p. } 3/8 \\ 1, \text{ w. p. } 3/8 \\ 3, \text{ w. p. } 1/8 \end{cases}
\]
Expectation - Definition

Definition: The expected value of a random variable X is

$$E[X] = \sum_a a \times \Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1 + \ldots + X_N}{N} \approx E[X].$$

That is indeed the case, in the same way that the fraction of times $X = x$ approaches $\Pr[X = x]$. This (nontrivial) result is called the Law of Large Numbers.

The subjectivist (bayesian) interpretation of $E[X]$ is less obvious.

Expectation and Average

There are n students in the class;

$$X(m) = \text{score of student } m, \text{ for } m = 1, 2, \ldots, n.$$

“Average score” of the n students: add scores and divide by n:

$$\text{Average} = \frac{X(1) + X(1) + \ldots + X(n)}{n}.$$

Expectation: a useful fact.

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \ldots, n\}$, $\Pr[\omega] = 1/n$ for all ω.

Random Variable: midterm score: $X(\omega)$.

Expectation:

$$E(X) = \sum_{\omega} X(\omega) \Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$$

Hence,

$$\text{Average} = \frac{1}{n} \sum_{\omega} X(\omega).$$

This holds for a uniform probability space.

Named Distributions

Some distributions come up over and over again.

...like “choose” or “stars and bars”....

Let’s cover some.
The binomial distribution.

Flip \(n \) coins with heads probability \(p \).
Random variable: number of heads.

Binomial Distribution: \(\Pr[X = i] \), for each \(i \).

How many sample points in event \(*X = i* \)? \(i \) heads out of \(n \) coin flips \(\implies \binom{n}{i} \).

What is the probability of \(\omega \) if \(\omega \) has \(i \) heads? Probability of heads in any position is \(p \).
Probability of tails in any position is \(1 - p \).
So, we get \(\Pr[\omega] = p^i(1 - p)^{n-i} \).

Probability of \(*X = i* \) is sum of \(\Pr[\omega], \omega \in *X = i* \).

\[
\Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0,1,\ldots,n : B(n,p) \text{ distribution}
\]

Expectation of Binomial Distribution

Parameter \(p \) and \(n \). What is expectation?

\[
\Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0,1,\ldots,n : B(n,p) \text{ distribution}
\]

\[
E[X] = \sum_i i \times \Pr[X = i].
\]

Uh oh? Well... It is \(np \).

Proof? After linearity of expectation this is easy.

Waiting is good.

The binomial distribution.

1. \(T \ T \ T \ T \ T \ T \ T \ T \ T \)
2. \(1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \)
3. \(m \ 1 \ m \ 1 \ m \ 1 \ m \ 1 \ m \)

(\(m \) times \((1-p) \) \(p^m \) \((1-p)^{n-m} \))

(\(\binom{n}{m} \) outcomes with \(m \) Hs and \(n-m \) Ts

\[
\Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}
\]

Uniform Distribution

Roll a six-sided balanced die. Let \(X \) be the number of pips (dots).
Then \(X \) is equally likely to take any of the values \(\{1,2,\ldots,6\} \). We say that \(X \) is uniformly distributed in \(\{1,2,\ldots,6\} \).

More generally, we say that \(X \) is uniformly distributed in \(\{1,2,\ldots,n\} \) if
\[
\Pr[X = m] = \frac{1}{n} \text{ for } m = 1,2,\ldots,n.
\]

In that case,
\[
E[X] = \sum_{m=1}^n m \Pr[X = m] = \sum_{m=1}^n m \times \frac{1}{n} = \frac{n(n+1)}{2} = \frac{n+1}{2}.
\]

Error channel and...

A packet is corrupted with probability \(p \).
Send \(n + 2k \) packets.
Probability of at most \(k \) corruptions.
\[
\sum_{i=0}^k \binom{n+2k}{i} p^i (1-p)^{n+2k-i}.
\]

Also distribution in polling, experiments, etc.

Geometric Distribution

Let's flip a coin with \(\Pr[H] = p \) until we get \(H \).

For instance:
- \(\omega_1 = H \), or
- \(\omega_2 = T \ H \), or
- \(\omega_3 = T \ T \ T \), or
- \(\omega_{6n} = T \ T \ T \ T \ T \ T \ H \).

Note that \(\Omega = \{ \omega_n, n = 1,2,\ldots \} \).
Let \(X \) be the number of flips until the first \(H \). Then, \(X(\omega_n) = n \).
Also,
\[
\Pr[X = n] = (1-p)^{n-1} p, n \geq 1.
\]
Geometric Distribution

\[\Pr(X = n) = (1 - p)^{n-1}p, \quad n \geq 1. \]

Hence,\[\sum_{n=1}^{\infty} \Pr(X = n) = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1 \), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed, \[aS = 1 + a + a^2 + a^3 + \cdots \]
\[(1-a)S = 1 + a + a^2 + a^3 + \cdots - 1 = a + a^2 + a^3 + \cdots = S. \]

Hence, \[\sum_{n=1}^{\infty} \Pr(X = n) = p \frac{1}{1-(1-p)} = 1. \]

Geometric Distribution

\[\Pr(X = n) = (1 - p)^{n-1}p, \quad n \geq 1. \]

Note that \[\sum_{n=1}^{\infty} \Pr(X = n) = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=0}^{\infty} (1 - p)^n. \]

One has \[E[X] = \sum_{n=1}^{\infty} n \Pr(X = n) = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus, \[E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots \]
\[(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots \]
\[pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots \]
by subtracting the previous two identities
\[= \sum_{n=1}^{\infty} \Pr(X = n) = 1. \]

Hence, \[E[X] = \frac{1}{p}. \]

Summary

- A random variable \(X \) is a function \(X : \Omega \to \mathbb{R} \).
- \(\Pr(X = a) := \Pr[X^{-1}(a)] = \Pr\{\omega | X(\omega) = a\} \).
- \(\Pr(X \in A) := \Pr[X^{-1}(A)] \).
- The distribution of \(X \) is the list of possible values and their probability: \(\{(a, \Pr[X = a]), a \in \mathbb{R}\} \).
- \(E[X] := \sum_a a \Pr[X = a] \).
- Expectation is Linear.
- \(B(n, p), U[1 : n], G(p), P(\lambda) \).