How to read like a mathematician

Maxim #1 When you read mathematical writing and you come across a proof, cover it up and try to figure it out yourself. You may not succeed, but you will understand what obstacles the proof has to overcome.

Maxim #2 At the heart of most proofs, definitions, etc., there is a simple idea. Your mission: find it!
Induction

The sledgehammer of math

\[P(n) : \text{propositional function with domain } \mathbb{N} \]

\[\text{I tell you: } P(0) \text{ is true} \]

\[P(n) \Rightarrow P(n+1) \text{ for all } n \in \mathbb{N} \]

Question Is \(P(1000) \) true? **Yes!**

\[\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 & \ldots & \quad 999 & \quad 1000 \\
\end{align*} \]

Principle of induction

To prove \(\forall n \in \mathbb{N} \ P(n) \), it is enough to prove:

- **Base Case**: \(P(0) \)

- **Inductive Step**: \(\forall n \in \mathbb{N} \ (P(n) \Rightarrow P(n+1)) \)
Principle of induction

To prove \(\forall n \in \mathbb{N} \ P(n) \), it is enough to prove:

Base Case: \(P(0) \)

Inductive Step: \(\forall n \in \mathbb{N} \ (P(n) \Rightarrow P(n+1)) \)

Question: Would this work if we replaced \(\mathbb{N} \) with \(\mathbb{Z} \)? No!

Counterexample:

\[P(n) = \text{“} n \geq -2 \text{”} \text{ with domain } \mathbb{Z} \]

\[P(0) = \text{“} 0 \geq -2 \text{”} \checkmark \]

\[P(n) \Rightarrow P(n+1) \text{ “} n \geq -2 \Rightarrow n+1 \geq -2 \text{”} \checkmark \]

\[\ldots -4 -3 -2 -1 0 1 2 3 \ldots \]
Examples of using induction

Question What is $0+1+2+\ldots+n$?

\[
\begin{align*}
0 & = \frac{0(0+1)}{2} = 0 \\
0+1 & = 1 = \frac{1(1+1)}{2} = 1 \\
0+1+2 & = 3 = \frac{2(2+1)}{2} = 3 \\
0+1+2+3 & = 6 = \frac{3(3+1)}{2} = 6
\end{align*}
\]

Claim $0+1+2+\ldots+n = \frac{n(n+1)}{2}$

How to prove it? Induction!
Thm. For all \(n \in \mathbb{N} \), \(0 + 1 + ... + n = \frac{n(n+1)}{2} \)

proof.

Base Case: \(n = 0 \). \(0 = \frac{0(0+1)}{2} \)

Inductive Hypothesis: Assume \(0 + 1 + ... + n = \frac{n(n+1)}{2} \)

Inductive Step: Use \(\text{IH} \) to show that

\[
0 + 1 + ... + n + (n+1) = \frac{n(n+1)}{2} + (n+1) \quad \text{(By IH)}
\]

\[
= \frac{n(n+1) + 2(n+1)}{2}
\]

\[
= \frac{n(n+1) + 2(n+1)}{2}
\]

\[
= \frac{(n+2)(n+1)}{2}
\]

\[
= \frac{(n+1)(n+1)}{2}.
\]
2.1 Another example

Triomino tile:

Tiling a grid with triominoes:
cover all squares, no overlaps

Question: Can you tile a chessboard with triominoes?
No! Chessboard has $8 \times 8 = 64$ squares, not divisible by 3.

What if we remove one square?

Easier version: tile a 4×4 grid with 1 square removed?

Thm: For every $n \in \mathbb{N}$, any $2^n \times 2^n$ grid with one square removed can be tiled with triominoes.
Thus, for every $n \in \mathbb{N}$, any $2^n \times 2^n$ grid with one square removed can be tiled with trominos.

Proof:

Base case: $n=0$. $2^0 = 1$

- 1×1 grid
- 1 square removed
- Nothing left, easy to tile!

Inductive hypothesis: Assume all $2^n \times 2^n$ grids with one square removed can be tiled.

Inductive step: Have a $2^{n+1} \times 2^{n+1}$ grid with one square removed. Want to show it can be tiled.

1. Divide into 4 $2^n \times 2^n$ grids
2. Place tromino in center
3. Now each $2^n \times 2^n$ piece is missing one piece
4. Tile each one using IH
Question: Tile this grid with triominoes

The induction argument tells you how!

Answer:

First, divide into 4 2×2 grids & put a triomino in the center.

Now, recursively tile each 2×2 grid.

Lesson: proofs by induction often tell you recursive algorithms.
③ When is induction useful?

When you want to prove a statement about all natural numbers
Or all natural numbers in some range

Example \(\forall n \in \mathbb{N} \ (0+1+2+...+n = \frac{n(n+1)}{2}) \)

Especially if

① You are proving something about a recursively defined sequence
Example Fibonacci numbers
\(F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n \)
0, 1, 1, 2, 3, 5, 8, ...

② You are proving something about a recursive algorithm or an algorithm that loops

cs 170!
Variations on induction

1. **Different base case**
 - Prove $P(7)$ and $P(n) \Rightarrow P(n+1)$
 - Conclude $\forall n \geq 7 \ P(n) = \forall n \in \mathbb{N} \ (n \geq 7 \Rightarrow P(n))$

2. **Multiple base cases**
 - Prove $P(0)$, $P(1)$, $P(2)$ and $\forall n \geq 2 \ (P(n) \Rightarrow P(n+1))$
 - Conclude $\forall n \in \mathbb{N} \ P(n)$

3. **Change the inductive assumption**
 - Want to prove $\forall n \in \mathbb{N} \ P(n)$
 - Find some $Q(n)$ such that $Q(n) \Rightarrow P(n)$
 - Prove $Q(0)$ and $Q(n) \Rightarrow Q(n+1)$
 - Looks harder, but useful if $P(n) \Rightarrow P(n+1)$ hard to prove because P is too weak

4. **Strong induction**
 - Prove $P(0)$ and $(P(0) \land P(1) \land \ldots \land P(n)) \Rightarrow P(n+1)$
 - Conclude $\forall n \in \mathbb{N} \ P(n)$
 - Secretly just a special case of 3
4.1 Changing the inductive hypothesis

Theorem: For every \(n \in \mathbb{N} \), the sum of the first \(n \) odd numbers is a perfect square. i.e., \(= k^2 \) for some \(k \in \mathbb{N} \)

Proof attempt

Base case: \(n = 1 \)
- First odd number: 1
- \(1 = 1^2 \) ✓

Inductive hypothesis: Sum of first \(n \) odd numbers is perfect square

Want to show

Inductive step: WTS: Sum of first \(n+1 \) odd numbers is perfect square
- \((n+1)^{st}\) odd number: \(2n+1 \)

\[
\begin{align*}
\text{sum of first } n+1 \text{ odd } #s &= (\text{sum of first } n \text{ odd } #s) + (2n+1) \\
&= k^2 + (2n+1) \text{ for some } k \in \mathbb{N} \\
&= ?? \checkmark
\end{align*}
\]

It would help to know what the sum of the first \(n \) odd numbers is equal to
Then for every $n \in \mathbb{N}$, the sum of the first n odd numbers is a perfect square.

It would help to know what the sum of the first n odd numbers is equal to:

- $1 = 1 = 1^2$
- $1 + 3 + 5 + 7 = 16 = 4^2$
- $1 + 3 = 4 = 2^2$
- $1 + 3 + 5 = 9 = 3^2$

It looks like the sum of first n odd numbers is n^2.

Proof We will show the sum of the first n odd numbers is n^2.

- **Base Case:** $n = 1$

 $1 = 1^2$

 (Actually, base case of $n = 0$ also works.)

- **Inductive Hypothesis:** Sum of first n odd numbers is n^2.

- **Inductive Step:** WTS sum of first $(n+1)$ odd numbers is $(n+1)^2$.

 Sum of first $(n+1)$ odd numbers = (Sum of first n) + $(2n+1)$

 $= n^2 + (2n+1)$ (By IH)

 $= (n+1)^2$

Lesson: When you get stuck, work out small examples.
4.2 Strong induction

Regular induction

Prove $P(0)$
Prove $P(n) \Rightarrow P(n+1)$
Conclude $\forall n \in \mathbb{N}, P(n)$

Strong induction

Prove $P(0)$
Prove $(\forall k \leq n, P(k)) \Rightarrow P(n+1)$
Conclude $\forall n \in \mathbb{N}, P(n)$
Then Every natural number $n > 1$ is a product of prime numbers

Example $12 = 2 \cdot 2 \cdot 3$ $17 = 17$ $57 = 3 \cdot 19$ $60 = 15 \cdot 4 = 5 \cdot 3 \cdot 2$ 2

proof attempt

Base case: $n = 2$

2 is prime ✓

Inductive hypothesis: Assume $n > 1$ and n is a product of prime numbers ← need to replace this

Inductive step: WTS $n+1$ is a product of primes

Two cases

Case 1: $n+1$ is prime ✓

Case 2: $n+1$ is not prime

$\exists a, b, (n+1) = a \cdot b$ and $a, b \neq 1$, $a, b \neq n+1$

How can we use IH??

Done if we had IH for a and b!
Then every natural number \(n > 1 \) is a product of prime numbers.

Example: \(12 = 2 \cdot 2 \cdot 3 \), \(17 = 17 \), \(57 = 3 \cdot 19 \), \(60 = 15 \cdot 4 = 5 \cdot 3 \cdot 2 \cdot 2 \)

Proof attempt:

Base case: \(n = 2 \) (Base case of \(n = 0 \) actually works)

\(n = 2 \) is prime \(\checkmark \)

Inductive hypothesis: Assume \(n > 1 \) and for all \(k \leq n \), if \(k > 1 \) then \(k \) is a product of prime numbers.

Inductive step: WTS \(n+1 \) is a product of primes.

Two cases:

Case 1: \(n+1 \) is prime \(\checkmark \)

Case 2: \(n+1 \) is not prime

\(\exists a, b \), \((n+1) = a \cdot b \) and \(a, b \neq 1 \), \(a, b \neq n+1 \)

\(1 < a/b \leq n \) \(\Rightarrow \) \(a \) and \(b \) both product of primes

\(\Rightarrow \) \(n+1 \) is a product of primes.
4.3 Aside: Induction, Strong induction, well-ordering

Not very important to understand

Induction \[P(0) \land P(n) \Rightarrow P(n+1) \quad \forall n \in \mathbb{N}, P(n) \]

Strong induction \[P(0) \land \left(\forall k \leq n, P(k) \right) \Rightarrow P(n+1) \quad \forall n \in \mathbb{N}, P(n) \]

Well-ordering All nonempty subsets of \(\mathbb{N} \) have a least element

They are all equivalent

Strong induction on \(P(n) \) = Regular induction on \(Q(n) = \forall k \leq n, P(k) \)

Induction on \(P(n) \) from well ordering: Look at set of places where \(P(n) \) doesn't hold
Different base case & multiple base cases

Fibonacci sequence \(F_0 = 0 \quad F_1 = 1 \quad F_{n+2} = F_n + F_{n+1} \)

\[
\begin{array}{c|c|c|c}
F_0 &=& 0 \\
F_1 &=& 1 \\
F_2 &=& 0+1=1 \\
F_3 &=& 1+1=2 \\
F_4 &=& 1+2=3 \\
F_5 &=& 2+3=5 \\
F_6 &=& 3+5=8 \\
\end{array}
\]

How fast does the Fibonacci sequence grow?
Linear? Quadratic? Exponential? …

<table>
<thead>
<tr>
<th>n</th>
<th>0 1 2 3 4 5 6 7 8 9 …</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_n)</td>
<td>0 1 1 2 3 5 8 13 21 34 …</td>
</tr>
</tbody>
</table>

It looks like eventually \(F_n \) is always bigger than \(n \)

Theorem For all \(n \geq 6 \), \(F_n > n \).

How to prove it? **Induction**!
Then For all natural numbers $n \geq 6$, $F_n > n$

proof

Base cases:

$n = 6$ \quad $F_6 = 8 > 6$

$n = 7$ \quad $F_7 = 13 > 7$

Inductive hypothesis: Assume $n \geq 7$ and for all $k \leq n$, if $k \geq 6$ then $F_k > k$

Inductive step: WTS $F_{n+1} > n+1$

$$F_{n+1} = F_n + F_{n-1}$$

$$> (n-1) + n \quad \text{By IH, note } n \geq 7 \Rightarrow n,n-1 \geq 6$$

$$= n+1 + (n-2)$$

$$> n+1 \quad n \geq 7 \Rightarrow n-2 > 0$$

Exercise: $F_n < 2^n$ for all n

Harder: Find an exact formula for F_n
Lecture 2 notes: There are at least 2 people in San Francisco who have the same # of hairs on their head.

Thus, all people have the same number of hairs on their head (?!)

Proof: Let \(P(n) = \) "in any set of \(n \) people, everyone has the same number of hairs on their head.

Show \(P(n) \) by induction.

Base case: \(n = 1 \) 1 person \(\checkmark \)

Inductive hypothesis: Assume \(P(n) \)

Inductive step: \(n+1 \) people \(a_1, a_2, \ldots, a_n, a_{n+1} \)

\(\exists H \Rightarrow a_1, a_2, \ldots, a_n \) have same # of hairs

\(a_2, a_3, \ldots, a_{n+1} \) have same # of hairs

So, all have same # of hairs as \(a_2 \)

What's wrong with this?
Thus all people have the same number of hairs on their head (?!)

Proof

Let \(P(n) \) = "in any set of \(n \) people, everyone has the same number of hairs on their head."

Show \(P(n) \) by induction.

Base case: \(n = 1 \) → 1 person → \(\checkmark \)

Inductive hypothesis: Assume \(P(n) \)

Inductive step: \(n+1 \) people \(a_1, a_2, \ldots, a_n, a_{n+1} \)

\[\text{IH } \Rightarrow \quad a_1, a_2, \ldots, a_n \text{ have same # of hairs} \]

\[a_2, a_3, \ldots, a_{n+1} \text{ have same # of hairs} \]

So all have same # of hairs as \(a_2 \)

What's wrong with this?

Answer: Inductive step doesn't work when \(n = 1 \)