1. Random Variables: Brief Review
2. Joint Distributions.
3. Linearity of Expectation
Random Variables: Definitions

Definition
A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \mathbb{R}$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions
(a) For $a \in \mathbb{R}$, one defines
$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathbb{R}$, one defines
$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that $X = a$ is defined as
$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as
$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is
$$\{(a, Pr[X = a]) : a \in A \},$$
where A is the range of X. That is, $A = \{X(\omega), \omega \in \Omega \}$.
Expectation - Definition

Definition: The expected value (or mean, or expectation) of a random variable X is

$$E[X] = \sum_a a \times Pr[X = a].$$

Theorem:

$$E[X] = \sum_\omega X(\omega) \times Pr[\omega].$$

Proof:

$$E[X] = \sum_a a \times Pr[X = a]$$

$$= \sum_a a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

$$= \sum_a \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

$$= \sum_\omega X(\omega) Pr[\omega]$$
Flip a fair coin three times.

\[\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\} \]

\[X = \text{number of } H'\text{s: } \{3, 2, 2, 2, 1, 1, 1, 0\} \]

Thus,

\[\sum_{\omega} X(\omega) Pr[\omega] = \{3 + 2 + 2 + 2 + 1 + 1 + 1 + 0\} \times \frac{1}{8} \]

Also,

\[\sum_{a} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8} \]
Win or Lose.

Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X:
\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} → \{3, 1, 1, −1, 1, −1, −1, −3\}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?
Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment many times:
$$\frac{X_1 + \cdots + X_n}{n}, \text{ when } n \gg 1.$$

The fact that this average converges to $E[X]$ is a theorem: the Law of Large Numbers. (See later.)
Multiple Random Variables.

Experiment: toss two coins. $\Omega = \{HH, TH, HT, TT\}$.

\[X_1(\omega) = \begin{cases}
1, & \text{if coin 1 is heads} \\
0, & \text{otherwise}
\end{cases} \quad X_2(\omega) = \begin{cases}
1, & \text{if coin 2 is heads} \\
0, & \text{otherwise}
\end{cases} \]
Multiple Random Variables: setup.

Joint Distribution: \(\{(a, b, Pr[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\} \), where \(\mathcal{A} (\mathcal{B}) \) is possible values of \(X (Y) \).

\[
\sum_{a \in \mathcal{A}, b \in \mathcal{B}} Pr[X = a, Y = b] = 1
\]

Marginal for \(X \): \(Pr[X = a] = \sum_{b \in \mathcal{B}} Pr[X = a, Y = b] \).
Marginal for \(Y \): \(Pr[Y = b] = \sum_{a \in \mathcal{A}} Pr[X = a, Y = b] \).

<table>
<thead>
<tr>
<th>X/Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
<td>.4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>3</td>
<td>.1</td>
<td>0</td>
<td>.2</td>
<td>.3</td>
</tr>
<tr>
<td>Y</td>
<td>.3</td>
<td>.1</td>
<td>.2</td>
<td>.6</td>
</tr>
</tbody>
</table>

Conditional Probability: \(Pr[X = a | Y = b] = \frac{Pr[X=a, Y=b]}{Pr[Y=b]} \).
Review: Independence of Events

- Events A, B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Events A, B, C are mutually independent if
 - A, B are independent,
 - A, C are independent,
 - B, C are independent
 and $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C]$.
- Events $\{A_n, n \geq 0\}$ are mutually independent if ….
- Example: $X, Y \in \{0, 1\}$ two fair coin flips $\Rightarrow X, Y, X \oplus Y$ are pairwise independent but not mutually independent.
- Example: $X, Y, Z \in \{0, 1\}$ three fair coin flips are mutually independent.
Independent Random Variables.

Definition: Independence

The random variables X and Y are **independent** if and only if

$$Pr[Y = b | X = a] = Pr[Y = b], \text{ for all } a \text{ and } b.$$

Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], \text{ for all } a \text{ and } b.$$

Follows from $Pr[A \cap B] = Pr[A | B]Pr[B]$ (Product rule.)
Independence: Examples

Example 1
Roll two dice. $X, Y =$ number of pips on the two dice. $X,$ Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2
Roll two dice. $X =$ total number of pips, $Y =$ number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$

Example 3
Flip a fair coin five times, $X =$ number of Hs in first three flips, $Y =$ number of Hs in last two flips. X and Y are independent.

Indeed:

$$Pr[X = a, Y = b] = \binom{3}{a} \binom{2}{b} 2^{-5} = \binom{3}{a} 2^{-3} \times \binom{2}{b} 2^{-2} = Pr[X = a]Pr[Y = b].$$
Linearity of Expectation

Theorem:

\[E[X + Y] = E[X] + E[Y] \]

\[E[cX] = cE[X] \]

Proof: \(E[X] = \sum_{\omega \in \Omega} X(\omega) \times P[\omega] \).

\[
E[X + Y] = \sum_{\omega \in \Omega} (X(\omega) + Y(\omega))Pr[\omega] \\
= \sum_{\omega \in \Omega} X(\omega)Pr[\omega] + \sum_{\omega \in \Omega} Y(\omega)Pr[\omega] \\
= \sum_{\omega \in \Omega} X(\omega)Pr[\omega] + \sum_{\omega \in \Omega} Y(\omega)Pr[\omega] \\
= E[X] + E[Y]
\]
Indicators

Definition
Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases}
1, & \text{if } \omega \in A \\
0, & \text{if } \omega \notin A
\end{cases}$$

is called the \textit{indicator} of the event A.

Note that $Pr[X = 1] = Pr[A]$ and $Pr[X = 0] = 1 - Pr[A]$.

Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\} \text{ or } 1_A(\omega).$$

Thus, we will write $X = 1_A$.
Linearity of Expectation

Theorem: Expectation is linear

\[E[a_1 X_1 + \cdots + a_n X_n] = a_1 E[X_1] + \cdots + a_n E[X_n]. \]

Proof:

\[
\begin{align*}
E[a_1 X_1 + \cdots + a_n X_n] \\
= \sum_{\omega} (a_1 X_1(\omega) + \cdots + a_n X_n(\omega)) Pr[\omega] \\
= a_1 \sum_{\omega} X_1(\omega) Pr[\omega] + \cdots + a_n \sum_{\omega} X_n(\omega) Pr[\omega] \\
= a_1 E[X_1] + \cdots + a_n E[X_n].
\end{align*}
\]

Note: If we had defined \(Y = a_1 X_1 + \cdots + a_n X_n \) has had tried to compute \(E[Y] = \sum_y y Pr[Y = y] \), we would have been in trouble!
Using Linearity - 1: Pips (dots) on dice

Roll a die n times.

$X_m =$ number of pips on roll m.

$X = X_1 + \cdots + X_n =$ total number of pips in n rolls.

$$
E[X] = E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n], \text{ by linearity}
$$

$= nE[X_1]$, because the X_m have the same distribution

Now,

$$
E[X_1] = 1 \times \frac{1}{6} + \cdots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.
$$

Hence,

$$
E[X] = \frac{7n}{2}.
$$

Note: Computing $\sum_x xPr[X = x]$ directly is not easy!
Using Linearity - 2: Fixed point.

Hand out assignments at random to \(n \) students.

\(X = \) number of students that get their own assignment back.

\(X = X_1 + \cdots + X_n \) where

\(X_m = 1 \{ \text{student } m \text{ gets his/her own assignment back} \} \).

One has

\[
E[X] = E[X_1 + \cdots + X_n] \\
= E[X_1] + \cdots + E[X_n], \text{ by linearity} \\
= nE[X_1], \text{ because all the } X_m \text{ have the same distribution} \\
= nPr[X_1 = 1], \text{ because } X_1 \text{ is an indicator} \\
= n(1/n), \text{ because student 1 is equally likely} \\
\quad \quad \quad \quad \quad \quad \quad \text{to get any one of the } n \text{ assignments} \\
= 1.
\]

Note that linearity holds even though the \(X_m \) are not independent (whatever that means).

Note: What is \(Pr[X = m] \)? Tricky
Using Linearity - 3: Binomial Distribution.

Flip \(n \) coins with heads probability \(p \). \(X \) - number of heads

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

\[
E[X] = \sum_i i \times Pr[X = i] = \sum_i i \times \binom{n}{i} p^i (1 - p)^{n-i}.
\]

Uh oh. ... Or... a better approach: Let

\[
X_i = \begin{cases} 1 & \text{if } \text{ith flip is heads} \\ 0 & \text{otherwise} \end{cases}
\]

\[
E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.
\]

Moreover \(X = X_1 + \cdots X_n \) and

\[
E[X] = E[X_1] + E[X_2] + \cdots E[X_n] = n \times E[X_i] = np.
\]
Assume A and B are disjoint events. Then $1_{A \cup B}(\omega) = 1_A(\omega) + 1_B(\omega)$.

Taking expectation, we get

In general, $1_{A \cup B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A \cap B}(\omega)$.

Taking expectation, we get $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$.

Observe that if $Y(\omega) = b$ for all ω, then $E[Y] = b$.

Thus, $E[X + b] = E[X] + b$.

Empty Bins

Experiment: Throw m balls into n bins.

Y - number of empty bins.

Distribution is horrible.

Expectation? X_i - indicator for bin i being empty.

$$Y = X_1 + \cdots + X_n.$$

$$Pr[X_1 = 1] = (1 - \frac{1}{n})^m. \rightarrow E[Y] = n(1 - \frac{1}{n})^m.$$

For $n = m$ and large n, $(1 - 1/n)^n \approx \frac{1}{e}$.

$\frac{n}{e} \approx 0.368n$ empty bins on average.
Experiment: Get random coupon from n until get all n coupons.
Outcomes: \{123145..., 56765...\}
Random Variable: X - length of outcome.

Today: $E[X]$?
Geometric Distribution: Expectation

\[X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[
\begin{align*}
E[X] &= p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \\
(1 - p)E[X] &= (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \\
pE[X] &= p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots \\
\end{align*}
\]

by subtracting the previous two identities

\[= \sum_{n=1}^{\infty} Pr[X = n] = 1. \]

Hence,

\[E[X] = \frac{1}{p}. \]
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr["get second coupon"|"got milk first coupon"] = \frac{n-1}{n}$

$E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}.$

$Pr["getting \ ith \ coupon"|"got \ i-1rst \ coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

\[
E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1} \\
= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)
\]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \] where \(\gamma \approx 0.58 \) (Euler-Mascheroni constant).
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!
par·a·dox

/ˈperəˌdoks/

noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.
"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.
 "in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it"

 synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; More

- a situation, person, or thing that combines contradictory features or qualities.
 "the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"
The cards have width 2. Induction shows that the center of gravity after \(n \) cards is \(H(n) \) away from the right-most edge.

Video.
Calculating $E[g(X)]$

Let $Y = g(X)$. Assume that we know the distribution of X.

We want to calculate $E[Y]$.

Method 1: We calculate the distribution of Y:

$$Pr[Y = y] = Pr[X ∈ g^{-1}(y)]$$

where $g^{-1}(x) = \{x ∈ \mathbb{R} : g(x) = y\}$.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_x g(x) Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_\omega g(X(\omega)) Pr[\omega] = \sum_x \sum_{\omega ∈ X^{-1}(x)} g(X(\omega)) Pr[\omega]$$

$$= \sum_x \sum_{\omega ∈ X^{-1}(x)} g(x) Pr[\omega] = \sum_x g(x) \sum_{\omega ∈ X^{-1}(x)} Pr[\omega]$$

$$= \sum_x g(x) Pr[X = x].$$
An Example

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$. Let also $g(X) = X^2$. Then (method 2)

\[
E[g(X)] = \sum_{x=-2}^{3} x^2 \frac{1}{6}
\]

\[
= \{4 + 1 + 0 + 1 + 4 + 9\} \frac{1}{6} = \frac{19}{6}.
\]

Method 1 - We find the distribution of $Y = X^2$:

\[
Y = \begin{cases}
4, & \text{w.p. } \frac{2}{6} \\
1, & \text{w.p. } \frac{3}{6} \\
0, & \text{w.p. } \frac{1}{6} \\
9, & \text{w.p. } \frac{1}{6} .
\end{cases}
\]

Thus,

\[
E[Y] = 4 \frac{2}{6} + 1 \frac{3}{6} + 0 \frac{1}{6} + 9 \frac{1}{6} = \frac{19}{6}.
\]
Probability Space: $\Omega, \Pr[\omega] \geq 0, \sum_\omega \Pr[\omega] = 1$.

Random Variable: Function on Sample Space.

Distribution: Function $\Pr[X = a] \geq 0. \sum_a \Pr[X = a] = 1$.

Expectation: $E[X] = \sum_\omega \Pr[\omega] = \sum_a \Pr[X = a]$.

Many Random Variables: each one function on a sample space.

Joint Distributions: Function $\Pr[X = a, Y = b] \geq 0. \sum_{a,b} \Pr[X = a, Y = b] = 1$.

Applications: compute expectations by decomposing.

Indicators: Empty bins, Fixed points.

Time to Coupon: Sum times to “next” coupon.

$Y = f(X)$ is Random Variable.

Distribution of Y from distribution of X.