Outline

Balls in Bins.
Outline

Balls in Bins.

Birthday.
Outline

Balls in Bins.
Birthday.
Coupon Collector.
Outline

Balls in Bins.
 Birthday.
 Coupon Collector.
 Load balancing.
Outline

Balls in Bins.
 Birthday.
 Coupon Collector.
 Load balancing.
Outline

- Balls in Bins.
 - Birthday.
 - Coupon Collector.
 - Load balancing.
- Geometric Distribution: Memoryless property.
Outline

Balls in Bins.
 Birthday.
 Coupon Collector.
 Load balancing.

Geometric Distribution: Memoryless property.
Poission Distribution: Sum of two Poission is Poission.
pause
Outline

Balls in Bins.
 Birthday.
 Coupon Collector.
 Load balancing.

Geometric Distribution: Memoryless property.
Poission Distribution: Sum of two Poission is Poission.
pause
Tail Sum for Expectation.
Balls in Bins.
 Birthday.
 Coupon Collector.
 Load balancing.

Geometric Distribution: Memoryless property.
Poission Distribution: Sum of two Poission is Poission.

pause

Tail Sum for Expectation.

Regression (optional.)
Balls in bins
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws m balls into $n > m$ bins.

Theorem: $\Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}$, for large enough n.

$Pr[\text{bin } k] = \frac{1}{n}$
for $k = 1, \ldots, n$
Balls in bins

One throws m balls into $n > m$ bins.

Theorem:

$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}$, for large enough n.
Balls in bins

Theorem:

\[\Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \text{ for large enough } n. \]
Balls in bins

Theorem:
\(Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} \), for large enough \(n \).

E.g., with \(m = 6 \) one has
\(Pr[\text{collision}] > \frac{1}{2} \)
Balls in bins

Theorem:

\[P_{\text{no collision}} \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n. \]
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}, \text{ for large enough } n. \]

In particular, \(Pr[\text{no collision}] \approx 1/2 \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]
Balls in bins

Theorem:
Pr[no collision] \(\approx \exp\{-\frac{m^2}{2n}\}\), for large enough \(n \).

In particular, \(Pr[\text{no collision}] \approx 1/2 \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[
m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.
\]

E.g., \(1.2\sqrt{20} \approx 5.4 \).
Theorem:
\[Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \] for large enough \(n \).

In particular, \(Pr[\text{no collision}] \approx \frac{1}{2} \) for \(m^2/(2n) \approx \ln(2) \), i.e.,
\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]

E.g., \(1.2\sqrt{20} \approx 5.4 \).

Roughly, \(Pr[\text{collision}] \approx \frac{1}{2} \) for \(m = \sqrt{n} \).
Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\}, \text{ for large enough } n. \]

In particular, \(Pr[\text{no collision}] \approx 1/2 \) for \(m^2/(2n) \approx \ln(2) \), i.e.,

\[m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}. \]

E.g., \(1.2\sqrt{20} \approx 5.4 \).

Roughly, \(Pr[\text{collision}] \approx 1/2 \) for \(m = \sqrt{n}. \) (\(e^{-0.5} \approx 0.6. \))
The Calculation.

$A_i = \text{no collision when } i\text{th ball is placed in a bin.}$
The Calculation.

\(A_i \) = no collision when \(i \)th ball is placed in a bin.

\[Pr[A_i | A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}). \]
The Calculation.

\[A_i = \text{no collision when } i \text{th ball is placed in a bin.} \]

\[Pr[A_i|A_{i-1} \cap \cdots \cap A] = (1 - \frac{i-1}{n}). \]

no collision = \(A_1 \cap \cdots \cap A_m \).
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[Pr[A_i | A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}). \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:
The Calculation.

$A_i =$ no collision when ith ball is placed in a bin.

$Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n})$.

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$
The Calculation.

A_i = no collision when ith ball is placed in a bin.

$Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n})$.

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$

$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[Pr[A_i | A_{i-1} \cap \cdots \cap A_1] = \left(1 - \frac{i-1}{n}\right). \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:

\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_m | A_1 \cap \cdots \cap A_{m-1}] \]

\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \]
The Calculation.

\(A_i = \) no collision when \(i \)th ball is placed in a bin.

\[
Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = \left(1 - \frac{i-1}{n}\right).
\]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:

\[
Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]
\]

\[
\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).
\]

Hence,

\[
\ln(Pr[\text{no collision}]) = m - 1 \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \text{(*)}
\]

We used \(\ln(1 - \epsilon) \approx -\epsilon \) for \(|\epsilon| \ll 1 \).
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]
\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}). \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:
\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}] \]
\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,
\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (\ast) \]
\[= -\frac{1}{n} \frac{m(m-1)}{2} \quad (\dagger) \approx \]

We used \(\ln(1 - \varepsilon) \approx -\varepsilon \) for \(|\varepsilon| \ll 1. \)
The Calculation.

\[A_i = \text{no collision when } i\text{th ball is placed in a bin.} \]

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = \left(1 - \frac{i-1}{n}\right). \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:

\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}] \]

\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (\ast) \]

\[= -\frac{1}{n} \frac{m(m-1)}{2} \quad (\dagger) \approx -\frac{m^2}{2n} \]
The Calculation.

\(A_i = \) no collision when \(i\)th ball is placed in a bin.

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}). \]

no collision = \(A_1 \cap \cdots \cap A_m\).

Product rule:

\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}] \]

\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (*) \]

\[= -\frac{1}{n} \frac{m(m-1)}{2} \quad (\dagger) \approx -\frac{m^2}{2n} \]

\((*) \) We used \(\ln(1 - \varepsilon) \approx -\varepsilon \) for \(|\varepsilon| \ll 1 \).
The Calculation.

$A_i = \text{no collision when } i\text{th ball is placed in a bin.}$

$Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}).$

no collision = $A_1 \cap \cdots \cap A_m.$

Product rule:

$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$

$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$

Hence,

$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln\left(1 - \frac{k}{n}\right) \approx \sum_{k=1}^{m-1} \left(-\frac{k}{n}\right) \quad (*)$

$= -\frac{1}{n} m(m-1) \quad (\dagger) \approx -\frac{m^2}{2n}$

$\quad (*) \text{ We used } \ln(1 - \varepsilon) \approx -\varepsilon \text{ for } |\varepsilon| \ll 1.$

$\quad (\dagger) \quad 1 + 2 + \cdots + m - 1 = (m - 1)m/2.$
Approximation

\[\exp(-x) = 1 - x + \frac{1}{2!} x^2 + \cdots \approx 1 - x, \quad \text{for} \ |x| \ll 1. \]

Hence, \(-x \approx \ln(1-x)\) for \(|x| \ll 1\).
Approximation

\[
\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \cdots \approx 1 - x, \quad \text{for } |x| \ll 1.
\]
Approximation

\[\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \cdots \approx 1 - x, \text{ for } |x| \ll 1. \]

Hence, \(-x \approx \ln(1 - x) \) for \(|x| \ll 1 \).
Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
Today’s your birthday, it’s my birthday too.

Probability that m people all have different birthdays?
With $n = 365$, one finds
Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With $n = 365$, one finds

$$Pr[\text{collision}] \approx 1/2 \text{ if } m \approx 1.2\sqrt{365} \approx 23.$$
Probability that m people all have different birthdays?
With $n = 365$, one finds

$$Pr[\text{collision}] \approx \frac{1}{2} \text{ if } m \approx 1.2\sqrt{365} \approx 23.$$

If $m = 60$, we find that
Probability that m people all have different birthdays?
With $n = 365$, one finds

$$Pr[\text{collision}] \approx 1/2 \text{ if } m \approx 1.2\sqrt{365} \approx 23.$$

If $m = 60$, we find that

$$Pr[\text{no collision}] \approx \exp\left\{- \frac{m^2}{2n}\right\} = \exp\left\{- \frac{60^2}{2 \times 365}\right\} \approx 0.007.$$
Today’s your birthday, it’s my birthday too..

Probability that \(m \) people all have different birthdays? With \(n = 365 \), one finds

\[
Pr[\text{collision}] \approx \frac{1}{2} \quad \text{if} \quad m \approx 1.2\sqrt{365} \approx 23.
\]

If \(m = 60 \), we find that

\[
Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} = \exp\left\{-\frac{60^2}{2 \times 365}\right\} \approx 0.007.
\]

If \(m = 366 \), then \(Pr[\text{no collision}] = \)
Probability that m people all have different birthdays?

With $n = 365$, one finds

$Pr[\text{collision}] \approx \frac{1}{2}$ if $m \approx 1.2\sqrt{365} \approx 23$.

If $m = 60$, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If $m = 366$, then $Pr[\text{no collision}] = 0$. (No approximation here!)
Using linearity of expectation.

Experiment: \(m \) balls into \(n \) bins uniformly at random.
Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
- $X =$ Number of collisions between pairs of balls.
Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:

$X = \text{Number of collisions between pairs of balls.}$

or number of pairs i and j where ball i and ball j are in same bin.
Using linearity of expectation.

Experiment: \(m \) balls into \(n \) bins uniformly at random.

Random Variable:
\(X = \) Number of collisions between pairs of balls.

or number of pairs \(i \) and \(j \) where ball \(i \) and ball \(j \) are in same bin.

\[X_{ij} = 1 \{ \text{balls} \, i, j \, \text{in same bin} \} \]
Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:

$X =$ Number of collisions between pairs of balls.

or number of pairs i and j where ball i and ball j are in same bin.

$X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\}$

$X = \sum_{ij} X_{ij}$
Using linearity of expectation.

Experiment: \(m \) balls into \(n \) bins uniformly at random.

Random Variable:
\[
X = \text{Number of collisions between pairs of balls.}
\]

or number of pairs \(i \) and \(j \) where ball \(i \) and ball \(j \) are in same bin.

\[
X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\}
\]

\[
X = \sum_{ij} X_{ij}
\]

\[
E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}.
\]
Using linearity of expectation.

Experiment: \(m \) balls into \(n \) bins uniformly at random.

Random Variable:
\[X = \text{Number of collisions between pairs of balls.} \]

or number of pairs \(i \) and \(j \) where ball \(i \) and ball \(j \) are in same bin.

\[X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\} \]

\[X = \sum_{ij} X_{ij} \]

\[E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}. \]

Ball \(i \) in some bin, ball \(j \) chooses that bin with probability \(1/n \).
Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:

$X = \text{Number of collisions between pairs of balls.}$

or $\text{number of pairs } i \text{ and } j \text{ where ball } i \text{ and ball } j \text{ are in same bin.}$

$X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\}$

$X = \sum_{ij} X_{ij}$

$E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}$.

Ball i in some bin, ball j chooses that bin with probability $1/n$.

$E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}$.
Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:

$X = \text{Number of collisions between pairs of balls.}$

or number of pairs i and j where ball i and ball j are in same bin.

$X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\}$

$X = \sum_{ij} X_{ij}$

$E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}.$

Ball i in some bin, ball j chooses that bin with probability $1/n$.

$E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$

For $m = \sqrt{n}$, $E[X] = 1/2$
Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:

$X = \text{Number of collisions between pairs of balls.}$

or number of pairs i and j where ball i and ball j are in same bin.

$X_{ij} = 1\{\text{balls }i,j\text{ in same bin}\}$

$X = \sum_{ij} X_{ij}$

$E[X_{ij}] = Pr[\text{balls }i,j\text{ in same bin}] = \frac{1}{n}.$

Ball i in some bin, ball j chooses that bin with probability $1/n$.

$E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$

For $m = \sqrt{n}$, $E[X] = 1/2$

Markov: $Pr[X \geq c] \leq \frac{EX}{c}.$
Using linearity of expectation.

Experiment: \(m \) balls into \(n \) bins uniformly at random.

Random Variable:
\(X = \) Number of collisions between pairs of balls.

or number of pairs \(i \) and \(j \) where ball \(i \) and ball \(j \) are in same bin.

\[X_{ij} = 1 \{ \text{balls } i, j \text{ in same bin} \} \]

\[X = \sum_{ij} X_{ij} \]

\[E[X_{ij}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}. \]

Ball \(i \) in some bin, ball \(j \) chooses that bin with probability \(1/n \).

\[E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}. \]

For \(m = \sqrt{n} \), \(E[X] = 1/2 \)

Markov: \(Pr[X \geq c] \leq \frac{EX}{c} \).

\[Pr[X \geq 1] \leq \frac{E[X]}{1} = 1/2. \]
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \log_2(m) + 9.2$.

Proof: Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/2n\} \approx 1 - m^2/(2n)$. Hence, $Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3} \iff 2n \approx m^2 10^3 \iff 2^b + 1 \approx m^2 2^{10.9} \log_2(m) \approx 10 + 2 \cdot 9.2 \log_2(m)$. Note: $\log_2(e) \approx 1.44$.
Checksums!

Consider a set of m files.
Checksums!

Consider a set of m files. Each file has a checksum of b bits.
Consider a set of \(m \) files.
Each file has a checksum of \(b \) bits.
How large should \(b \) be for \(\Pr[\text{share a checksum}] \leq 10^{-3} \)?
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Let $n = 2^b$ be the number of checksums.
Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\left\{-m^2/(2n)\right\}$.

Note: $\log_2(e) \approx 1.44 \ln(x)$.

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\left\{-m^2/(2n)\right\} \approx 1 - m^2/(2n)$.
Checksums!

Consider a set of \(m \) files. Each file has a checksum of \(b \) bits. How large should \(b \) be for \(Pr[\text{share a checksum}] \leq 10^{-3} \)?

Claim: \(b \geq 2.9 \ln(m) + 9 \).

Proof:

Let \(n = 2^b \) be the number of checksums. We know \(Pr[\text{no collision}] \approx \exp\left\{-m^2/(2n)\right\} \approx 1 - m^2/(2n) \). Hence,

\[
Pr[\text{no collision}] \approx 1 - 10^{-3}
\]
Consider a set of \(m \) files.
Each file has a checksum of \(b \) bits.
How large should \(b \) be for \(Pr[\text{share a checksum}] \leq 10^{-3} \)?

Claim: \(b \geq 2.9 \ln(m) + 9 \).

Proof:

Let \(n = 2^b \) be the number of checksums.
We know \(Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n) \). Hence,

\[
Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}
\]
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Let $n = 2^b$ be the number of checksums.
We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

\[
Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}
\]
\[
\iff 2n \approx m^210^3
\]
Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:
Let $n = 2^b$ be the number of checksums.
We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3} \iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}$$
Consider a set of \(m \) files. Each file has a checksum of \(b \) bits. How large should \(b \) be for \(Pr[\text{share a checksum}] \leq 10^{-3} \)?

Claim: \(b \geq 2.9 \ln(m) + 9 \).

Proof:

Let \(n = 2^b \) be the number of checksums. We know \(Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n) \). Hence,

\[
Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}
\]

\[
\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}
\]

\[
\iff b + 1 \approx 10 + 2 \log_2(m)
\]
Checksums!

Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$

$$\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}$$

$$\iff b + 1 \approx 10 + 2 \log_2(m) \approx 10 + 2.9 \ln(m).$$
Consider a set of m files. Each file has a checksum of b bits. How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$

$$\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}$$

$$\iff b + 1 \approx 10 + 2 \log_2(m) \approx 10 + 2.9 \ln(m).$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.
Coupon Collector Problem.

There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

Theorem:

(a) $\Pr[\text{miss one specific item}] \approx e^{-mn}$

(b) $\Pr[\text{miss any one of the items}] \leq ne^{-mn}$.
Coupon Collector Problem.

There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.
Coupon Collector Problem.

There are \(n \) different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.
Coupon Collector Problem.

There are \(n \) different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem:
Coupon Collector Problem.

There are \(n \) different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy \(m \) boxes,
The Coupon Collector Problem.

There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$
There are n different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...) One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$

(b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}$.
Coupon Collector Problem: Analysis.

Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$
Fail the first time: $(1 - \frac{1}{n})$
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$
Coupon Collector Problem: Analysis.

Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ...
Coupon Collector Problem: Analysis.

Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $\left(1 - \frac{1}{n} \right)$

Fail the second time: $\left(1 - \frac{1}{n} \right)$

And so on ... for m times. Hence,

$$Pr[A_m] = \left(1 - \frac{1}{n} \right) \times \cdots \times \left(1 - \frac{1}{n} \right)$$

$$= \left(1 - \frac{1}{n} \right)^m$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.
Event \(A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’} \)

Fail the first time: \((1 - \frac{1}{n})\)

Fail the second time: \((1 - \frac{1}{n})\)

And so on ... for \(m \) times. Hence,

\[
Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})
\]

\[
= (1 - \frac{1}{n})^m
\]

\[
ln(Pr[A_m]) = m ln(1 - \frac{1}{n}) \approx
\]
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
Coupon Collector Problem: Analysis.

Event $A_m = 'fail to get Brian Wilson in m cereal boxes’
Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$\ln(Pr[A_m]) = m \ln (1 - \frac{1}{n}) \approx m \times (- \frac{1}{n})$$

$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$
Coupon Collector Problem: Analysis.

Event \(A_m \) = ‘fail to get Brian Wilson in \(m \) cereal boxes’

Fail the first time: \((1 - \frac{1}{n}) \)

Fail the second time: \((1 - \frac{1}{n}) \)

And so on ... for \(m \) times. Hence,

\[
Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})
\]

\[
= (1 - \frac{1}{n})^m
\]

\[
\ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})
\]

\[
Pr[A_m] \approx \exp\{-\frac{m}{n}\}.
\]

For \(p_m = \frac{1}{2} \), we need around \(n \ln 2 \approx 0.69n \) boxes.
Collect all cards?

Experiment: Choose m cards at random with replacement.
Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$
Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$
Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_k = \text{‘fail to get player } k\text{’}, \text{ for } k = 1, \ldots, n$
Probability of failing to get at least one of these n players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$
Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_k = \{\text{fail to get player } k\}$, for $k = 1, \ldots, n$
Probability of failing to get at least one of these n players:

$$ p := \Pr[E_1 \cup E_2 \cdots \cup E_n] $$

How does one estimate p?
Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: $E_k = ‘fail to get player k’$, for $k = 1, \ldots, n$
Probability of failing to get at least one of these n players:

$$p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate p? **Union Bound:**

$$p = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$
Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: $E_k = \text{`fail to get player } k\text{'}$, for $k = 1, \ldots, n$

Probability of failing to get at least one of these n players:

$$p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate p? **Union Bound:**

$$p = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$\Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$
Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$

Probability of failing to get at least one of these n players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate p? **Union Bound:**

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}.$$
Thus,

\[Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]
Collect all cards?

Thus,

\[Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]

Hence,

\[Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right). \]
Thus,

\[\Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]

Hence,

\[\Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right). \]

To get \(p = 1/2 \), set \(m = n\ln(2n) \).
Collect all cards?

Thus,

\[Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}. \]

Hence,

\[Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right). \]

To get \(p = 1/2 \), set \(m = n\ln(2n) \).

\[
(p \leq ne^{-\frac{m}{n}} \leq ne^{-\ln(n/p)} \leq n\left(\frac{p}{n}\right) \leq p.)
\]
Thus,

$$Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$$

Hence,

$$Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right).$$

To get $p = 1/2$, set $m = n\ln\left(2n\right)$.

$$(p \leq ne^{-\frac{m}{n}} \leq ne^{-\ln(n/p)} \leq n\left(\frac{p}{n}\right) \leq p.)$$

E.g., $n = 10^2 \Rightarrow m = 530;$
Collect all cards?

Thus,

$$Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$$

Hence,

$$Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n\ln\left(\frac{n}{p}\right).$$

To get $p = 1/2$, set $m = n\ln{(2n)}$.

$$(p \leq ne^{-\frac{m}{n}} \leq ne^{-\ln(n/p)} \leq n\left(\frac{p}{n}\right) \leq p.)$$

E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.
Time to collect coupons

\[X \text{-time to get } n \text{ coupons.} \]
Time to collect coupons

\(X\)-time to get \(n\) coupons.
\(X_1\) - time to get first coupon.
Time to collect coupons

\(X\)-time to get \(n\) coupons.

\(X_1\) - time to get first coupon. Note: \(X_1 = 1\).
Time to collect coupons

\(X \) - time to get \(n \) coupons.

\(X_1 \) - time to get first coupon. Note: \(X_1 = 1 \). \(E(X_1) = 1 \).
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk”}]$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$
Time to collect coupons

X-time to get n coupons.
X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}|\text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$?
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{get second coupon} | \text{got first coupon}] = \frac{n-1}{n}$

$E[X_2]$? Geometric!
Time to collect coupons

X-time to get n coupons.
X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! !
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} =$
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{"get second coupon"|"got first coupon"}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr[\text{“getting } ith \text{ coupon”} | \text{“got } i-1 \text{rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$
Time to collect coupons

\(X\)-time to get \(n\) coupons.
\(X_1\) - time to get first coupon. Note: \(X_1 = 1\). \(E(X_1) = 1\).
\(X_2\) - time to get second coupon after getting first.

\(Pr[\text{“get second coupon”}|\text{“got milk first coupon”}] = \frac{n-1}{n}\)

\(E[X_2]?\) Geometric !!! \(\rightarrow E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}\).

\(Pr[\text{“getting ith coupon”}|\text{“got i-1rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}\)

\(E[X_i]\)
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{“getting } i\text{th coupon”}|\text{“got } i-1\text{rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{"get second coupon"|"got milk first coupon"}] = \frac{n-1}{n}$

$E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{"getting ith coupon|"got $i-1$rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}$,
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[“get second coupon“|“got \text{ first coupon}”] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[“getting \text{ } ith \text{ } coupon|“got \text{ } i-1 \text{ } rst \text{ } coupons”] = \frac{n-(i-1)}{n}$ $= \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}$, $i = 1, 2, \ldots, n$.

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \cdots + \frac{n}{1} = nH(n) \approx n(lnn + \gamma)$
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr["get second coupon" | "got first coupon"] = \frac{n-1}{n}$

$E[X_2]$? Geometric $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr["getting ith coupon" | "got i-1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] =$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{“getting ith coupon”} | \text{“got $i-1$st coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n$.

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$
Time to collect coupons

\(X\)-time to get \(n\) coupons.

\(X_1\) - time to get first coupon. Note: \(X_1 = 1\). \(E(X_1) = 1\).

\(X_2\) - time to get second coupon after getting first.

\(Pr[\text{“get second coupon”}|\text{“got —— first coupon”}] = \frac{n-1}{n}\)

\(E[X_2]? \text{Geometric} \implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}.

Pr[“getting \(i\)th coupon|“got \(i-1\)rst coupons”] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}

\(E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.

\[E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}\]

\[= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) = nH(n)\]
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{"get second coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{"getting ith coupon"}|\text{"got $i-1$rst coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$

$= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n) \approx n(ln\, n + \gamma)$
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n) \].

A good approximation is

\[H(n) \approx \ln(n) + \gamma \]

where \(\gamma \approx 0.58 \) (Euler-Mascheroni constant).
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \] where \(\gamma \approx 0.58 \) (Euler-Mascheroni constant).
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \text{ where } \gamma \approx 0.58 \text{ (Euler-Mascheroni constant)}. \]
Load balance: m balls in n bins.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin:
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1
Simplest..

Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized!
Simplest..

Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1 !
Centralized! Not so good.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random?
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load
Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 \(n \).
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 n. Uh Oh!
Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1 !
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 \(n \). Uh Oh!
Max load with probability \(\geq 1 - \delta \)?
Simplest..

Load balance: \(m \) balls in \(n \) bins.
For simplicity: \(n \) balls in \(n \) bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
\(n \). Uh Oh!
Max load with probability \(\geq 1 - \delta \)?
\(\delta = \frac{1}{n^c} \) for today.
Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
 n. Uh Oh!
Max load with probability $\geq 1 - \delta$?
 $\delta = \frac{1}{n^c}$ for today. c is 1 or 2.
Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
 Max load?
n. Uh Oh!
Max load with probability $\geq 1 - \delta$?
 $\delta = \frac{1}{n^c}$ for today. c is 1 or 2.
Balls in bins.

For each of \(n \) balls, choose random bin:

\[
\Pr[X_i \geq k] \leq \sum_{S \subseteq \{1, \ldots, n\}, |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound:

\[
\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i]
\]

\[
\Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k \leq \frac{n}{\sqrt{e}} \left(\frac{1}{n}\right)^k \leq \frac{1}{\sqrt{e}} \left(\frac{1}{n}\right)^k
\]

Choose \(k \), so that \(\Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
\Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \max \text{ load} \leq k \text{ w.p. } \geq 1 - \frac{1}{n}
\]
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$$
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k
\]
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n} \right)^k \text{ and } \binom{n}{k} \text{ subsets } S.$$
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S|=k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \text{ and } \binom{n}{k} \text{ subsets } S.$$

$$Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$$

$$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.
\]

\[
Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k \leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}
\]

Choose \(k \), so that \(Pr[X_i \geq k] \leq \frac{1}{n^2} \).
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i] \)

\[
Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n} \right)^k \text{ and } \binom{n}{k} \text{ subsets } S.
\]

\[
Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n} \right)^k \\
\leq \frac{n^k}{k!} \left(\frac{1}{n} \right)^k = \frac{1}{k!}
\]

Choose \(k \), so that \(Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2}
\]
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.$$

$$Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$$

$$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$$Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n}$$
Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

$Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$

From Union Bound: $Pr[\bigcup_i A_i] \leq \sum_i Pr[A_i]$

$Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \text{ and } \binom{n}{k}$ subsets S.

$Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k$

$\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$

Choose k, so that $Pr[X_i \geq k] \leq \frac{1}{n^2}$.

$Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load} \leq k \text{ w.p. } \geq 1 - \frac{1}{n}$
Balls in bins.

For each of \(n \) balls, choose random bin: \(X_i \) balls in bin \(i \).

\[
\Pr[X_i \geq k] \leq \sum_{S \subseteq [n], |S| = k} \Pr[\text{balls in } S \text{ chooses bin } i]
\]

From Union Bound: \(\Pr[\bigcup_i A_i] \leq \sum_i \Pr[A_i] \)

\[
\Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.
\]

\[
\Pr[X_i \geq k] \leq \binom{n}{k} \left(\frac{1}{n}\right)^k \\
\leq \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}
\]

Choose \(k \), so that \(\Pr[X_i \geq k] \leq \frac{1}{n^2} \).

\[
\Pr[\text{any } X_i \geq k] \leq n \times \frac{1}{n^2} = \frac{1}{n} \rightarrow \text{max load } \leq k \text{ w.p. } \geq 1 - \frac{1}{n}
\]
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2?$$
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k!} \leq \frac{1}{n^2}?$$

What is upper bound on max-load k?
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2?$$

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.
Solving for k

$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e\log n$
Solving for k

$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e\log n$

(Recall $k! \geq \left(\frac{k}{e}\right)^k$.)
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k!} \leq \frac{1}{n^2}?$$

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e \log n$
(Recall $k! \geq (\frac{k}{e})^k$.)

$$\implies \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2 \log n}\right)^k$$
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k!} \leq \frac{1}{n^2}?$$

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e\log n$

(Recall $k! \geq \left(\frac{k}{e}\right)^k$.)

$$\implies \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2\log n}\right)^k$$

If $\log n \geq 1$, then $k = 2e\log n$ suffices.
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2?$$

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e \log n$

(Recall $k! \geq (\frac{k}{e})^k$.)

$$\implies \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2\log n}\right)^k$$

If $\log n \geq 1$, then $k = 2e \log n$ suffices.

Also: $k = \Theta(\log n / \log \log n)$ suffices as well.
Solving for k

$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e\log n$

(Recall $k! \geq (\frac{k}{e})^k$.)

$$\implies \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2\log n}\right)^k$$

If $\log n \geq 1$, then $k = 2e\log n$ suffices.

Also: $k = \Theta(\log n/\log \log n)$ suffices as well.

$k^k \rightarrow n^c$.
Solving for k

$Pr[X_i \geq k] \leq \frac{1}{k!} \leq 1/n^2$?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e\log n$

(Recall $k! \geq (\frac{k}{e})^k$.)

$$\implies \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2\log n}\right)^k$$

If $\log n \geq 1$, then $k = 2e\log n$ suffices.

Also: $k = \Theta(\log n/\log \log n)$ suffices as well.

$k^k \to n^c$.

Actually Max load is $\Theta(\log n/\log \log n)$ w.h.p.
Solving for \(k \)

\[
Pr[X_i \geq k] \leq \frac{1}{k!} \leq \frac{1}{n^2}?
\]

What is upper bound on max-load \(k \)?

Lemma: Max load is \(\Theta(\log n) \) with probability \(\geq 1 - \frac{1}{n} \).

\(k! \geq n^2 \) for \(k = 2e \log n \)

(Recall \(k! \geq \left(\frac{k}{e}\right)^k \).)

\[
\Rightarrow \quad \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2\log n}\right)^k
\]

If \(\log n \geq 1 \), then \(k = 2e \log n \) suffices.

Also: \(k = \Theta(\log n/\log \log n) \) suffices as well.

\(k^k \to n^c \).

Actually Max load is \(\Theta(\log n/\log \log n) \) w.h.p.

(W.h.p. - means with probability at least \(1 - O(1/n^c) \) for today.)
Solving for k

$$Pr[X_i \geq k] \leq \frac{1}{k^2} \leq 1/n^2?$$

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$k! \geq n^2$ for $k = 2e \log n$

(Recall $k! \geq (\frac{k}{e})^k$.)

$$\Rightarrow \frac{1}{k!} \leq \left(\frac{e}{k}\right)^k \leq \left(\frac{1}{2\log n}\right)^k$$

If $\log n \geq 1$, then $k = 2e \log n$ suffices.

Also: $k = \Theta(\log n / \log \log n)$ suffices as well.

$k^k \to n^c$.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)

Better than variance based methods...
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$
\Pr[X > n + m | X > n] = \Pr[X > m] = (1 - p)^n (1 - p)^m = (1 - p)^{n+m}.
$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] =$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], \ m, n \geq 0.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m|X > n] =$$
Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \, m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let \(X \) be \(G(p) \). Then, for \(n \geq 0 \),

\[
Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.
\]

Theorem

\[
Pr[X > n + m | X > n] = Pr[X > m], \quad m, n \geq 0.
\]

Proof:

\[
Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]} = \frac{Pr[X > n + m]}{Pr[X > n]}
\]
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \quad m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m|X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], \quad m, n \geq 0. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m|X > n] = Pr[X > m], m, n \geq 0. \]
The coin is memoryless, therefore, so is X.

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0. \]

The coin is memoryless, therefore, so is \(X \).
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i].$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i + 1]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]
= \sum_{i=1}^{\infty} \{Pr[X \geq i] - Pr[X \geq i + 1]\}
= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i + 1]\}.$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - (i - 1) \times Pr[X \geq i]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots \}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - (i - 1) \times Pr[X \geq i]\}$$

$$= \sum_{i=1}^{\infty} Pr[X \geq i].$$
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$.
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i.$$
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)i = \frac{1}{1 - (1 - p)} = \frac{1}{p}. $$
Theorem: For a r.v. \(X \) that takes the values \(\{0, 1, 2, \ldots\} \), one has

\[
E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].
\]

If \(X = G(p) \), then \(Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1} \).

Hence,

\[
E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} = \frac{1}{p}.
\]
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$? Poission?
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter?
Sum of Poisson Random Variables.

For \(X = P(\lambda) \) and \(Y = P(\mu) \), what is \(X + Y \)?

Poission? Yes.
What parameter? \(\lambda + \mu \).
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \rightarrow \infty$ of $B(n, \lambda/n)$.
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:
break interval into n intervals
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

- Poisson? Yes.
- What parameter? $\lambda + \mu$.

Why?
- $P(\lambda)$ is limit $n \rightarrow \infty$ of $B(n, \lambda / n)$.

Recall Derivation:
- break interval into n intervals
- and each has arrival with probability λ / n.
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda / n)$.

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ / n.

Sum of Poisson Random Variables.

For \(X = P(\lambda) \) and \(Y = P(\mu) \), what is \(X + Y \)?

Poission? Yes.
What parameter? \(\lambda + \mu \).

Why?
\(P(\lambda) \) is limit \(n \to \infty \) of \(B(n, \lambda/n) \).

Recall Derivation:
break interval into \(n \) intervals
and each has arrival with probability \(\lambda/n \).

Now:
arrival for \(X \) happens with probability \(\lambda/n \)
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ/n.

Now:
arrival for X happens with probability λ/n
arrival for Y happens with probability μ/n
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?

$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ/n.

Now:
arrival for X happens with probability λ/n
arrival for Y happens with probability μ/n
Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ/n.

Now:
arrival for X happens with probability λ/n
arrival for Y happens with probability μ/n

So, we get limit $n \to \infty$ is $B(n, (\lambda + \mu)/n)$.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is $X + Y$?

Poission? Yes.
What parameter? $\lambda + \mu$.

Why?
$P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ/n.

Now:
arrival for X happens with probability λ/n
arrival for Y happens with probability μ/n

So, we get limit $n \to \infty$ is $B(n, (\lambda + \mu)/n)$.

Details: both could arrive with probability $\lambda \mu / n^2$.
But this goes to zero as $n \to \infty$.
(Like λ^2 / n^2 in previous derivation)
The "best" guess about Y, if we know only the distribution of Y, is $\mathbb{E}[Y]$. If "best" is Mean Squared Error. More precisely, the value of a that minimizes $\mathbb{E}[(Y - a)^2]$ is $a = \mathbb{E}[Y]$.

Proof: Let $\hat{Y} := Y - \mathbb{E}[Y]$. Then, $\mathbb{E}[\hat{Y}] = \mathbb{E}[Y - \mathbb{E}[Y]] = \mathbb{E}[Y] - \mathbb{E}[\mathbb{E}[Y]] = 0$.

So, $\mathbb{E}[(Y - a)^2] = \mathbb{E}[(\hat{Y} + c)^2] = \mathbb{E}[\hat{Y}^2] + 2\mathbb{E}[\hat{Y}c] + c^2$.

Hence, $\mathbb{E}[(Y - a)^2] \geq \mathbb{E}[\hat{Y}^2]$.
The “best” guess about Y,

$E[Y]$. If “best” is Mean Squared Error. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$. Proof:

Linear Regression: Preamble
The “best” guess about \(Y \), if we know only the distribution of \(Y \), is \(E[Y] \).
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

Proof:

Linear Regression: Preamble
Linear Regression: Preamble

The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.
More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.
More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$.

The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0, \forall c$.
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0, \forall c$. Now,

The “best” guess about \(Y \), if we know only the distribution of \(Y \), is \(E[Y] \).

If “best” is Mean Squared Error.

More precisely, the value of \(a \) that minimizes \(E[(Y - a)^2] \) is \(a = E[Y] \).

Proof:

Let \(\hat{Y} := Y - E[Y] \).

Then, \(E[\hat{Y}] = E[Y - E[Y]] = E[Y] - E[Y] = 0 \).

So, \(E[\hat{Y}c] = 0, \forall c \). Now,

\[
= E[(\hat{Y} + c)^2]
\]
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0$, $\forall c$. Now,

$$
$$
Linear Regression: Preamble

The “best” guess about \(Y \), if we know only the distribution of \(Y \), is \(E[Y] \).

If “best” is Mean Squared Error.

More precisely, the value of \(a \) that minimizes \(E[(Y - a)^2] \) is \(a = E[Y] \).

Proof:

Let \(\hat{Y} := Y - E[Y] \).

Then, \(E[\hat{Y}] = E[Y - E[Y]] = E[Y] - E[Y] = 0 \).

So, \(E[\hat{Y}c] = 0, \forall c \). Now,

\[
= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a \\
= E[\hat{Y}^2 + 2\hat{Y}c + c^2]
\]
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0, \forall c$. Now,

\[
= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a \\
= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2
\]
Linear Regression: Preamble

The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a$$

$$= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2$$

$$= E[\hat{Y}^2] + 0 + c^2$$
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0, \forall c$. Now,

\[
= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a \\
= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2 \\
= E[\hat{Y}^2] + 0 + c^2 \geq E[\hat{Y}^2].
\]
The "best" guess about Y, if we know only the distribution of Y, is $E[Y]$.

If "best" is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.
So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a$$
$$= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2$$
$$= E[\hat{Y}^2] + 0 + c^2 \geq E[\hat{Y}^2].$$

Hence, $E[(Y - a)^2] \geq E[(Y - E[Y])^2], \forall a$.
The “best” guess about Y, if we know only the distribution of Y, is $E[Y]$.

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$.

So, $E[\hat{Y}c] = 0, \forall c$. Now,

\[
\]

\[
= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a
\]

\[
= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2
\]

\[
= E[\hat{Y}^2] + 0 + c^2 \geq E[\hat{Y}^2].
\]

Hence, $E[(Y - a)^2] \geq E[(Y - E[Y])^2], \forall a$.

\[
\square
\]
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend on X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function? That is our next topic. A bit later, we will consider a general function $g(X)$.

Linear Regression: Preamble
Thus, if we want to guess the value of Y, we choose $E[Y]$.

Linear Regression: Preamble
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y.
Thus, if we want to guess the value of Y, we choose $E[Y]$.

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
Thus, if we want to guess the value of Y, we choose $E[Y]$.
Now assume we make some observation X related to Y.
How do we use that observation to improve our guess about Y?
The idea is to use a function $g(X)$ of the observation to estimate Y.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X.
Thus, if we want to guess the value of \(Y \), we choose \(E[Y] \).

Now assume we make some observation \(X \) related to \(Y \).

How do we use that observation to improve our guess about \(Y \)?

The idea is to use a function \(g(X) \) of the observation to estimate \(Y \).

The simplest function \(g(X) \) is a constant that does not depend of \(X \).

The next simplest function is linear: \(g(X) = a + bX \).
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function?
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function? That is our next topic.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend on X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function? That is our next topic. A bit later, we will consider a general function $g(X)$.

Linear Regression: Preamble
Linear Regression: Motivation

Example 1: 100 people.
Let \((X_n, Y_n) = (\text{height, weight})\) of person \(n\), for \(n = 1, \ldots, 100\):

\[
E[Y] = Y = -114.3 + 106.5X.
\]

\((X\) in meters, \(Y\) in kg.)
Linear Regression: Motivation

Example 1: 100 people.
Linear Regression: Motivation

Example 1: 100 people.
Let $(X_n, Y_n) = \text{(height, weight)}$ of person n, for $n = 1, \ldots, 100$:

\[
E[Y] = -114.3 + 106.5X.
\]
(X in meters, Y in kg.)
Example 1: 100 people.
Let $(X_n, Y_n) = (\text{height, weight})$ of person n, for $n = 1, \ldots, 100$:

The blue line is $Y = -114.3 + 106.5X$. (X in meters, Y in kg.)
Example 1: 100 people.

Let \((X_n, Y_n) = \) (height, weight) of person \(n\), for \(n = 1, \ldots, 100\):

The blue line is \(Y = -114.3 + 106.5X\). (\(X\) in meters, \(Y\) in kg.)
Linear Regression: Motivation

Example 1: 100 people.

Let \((X_n, Y_n) = \text{(height, weight)}\) of person \(n, \text{for } n = 1, \ldots, 100:\)

![Fitted Line Plot](image)

The blue line is \(Y = -114.3 + 106.5X\). \((X \text{ in meters, } Y \text{ in kg.})\)

Best linear fit: Linear Regression.
Motivation

Example 2: 15 people.
Motivation

Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15\):
Motivation

Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15\):
Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15\):

\[
Y = a + bX
\]

The line \(Y = a + bX\) is the linear regression.
LLSE

$LLE[X|Y]$ - best guess for Y given X.
Theorem

Consider two RVs X, Y with a given distribution $\Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \operatorname{cov}(X, Y) \operatorname{var}(X) (X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \operatorname{cov}(X, Y) \operatorname{var}(X) (X - E[X]).$$

$$E[Y - \hat{Y}] = 0$$ by linearity.

Also,

$$E[(Y - \hat{Y})X] = 0,$$

after a bit of algebra. (next slide)

Combine brown inequalities:

$$E[(Y - \hat{Y})(c + dX)] = 0$$ for any c, d.

Since:

$$\hat{Y} = \alpha + \beta X$$

for some α, β, so $\exists c, d$ s.t.

$$\hat{Y} - a - bX = c + dX.$$

Then,

$$E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b.$$

Now,

$$E[(Y - a - bX)^2] = E[(Y - \hat{Y})^2] + E[(\hat{Y} - a - bX)^2] + 0 \geq E[(Y - \hat{Y})^2].$$

This shows that

$$E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2],$$

for all (a, b).

Thus \hat{Y} is the LLSE.
Theorem

Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$
LLSE

$LLSE[Y|X]$ - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:
Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]}(X - E[X]).$$
LLSE

LLSE\([Y|X]\) - best guess for \(Y\) given \(X\).

Theorem

Consider two RVs \(X, Y\) with a given distribution \(Pr[X = x, Y = y]\). Then,

\[
L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).
\]

Proof 1:

\[
Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).
\]

\(E[Y - \hat{Y}] = 0\) by linearity.
LLSE

LLSE[$Y|X$] - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:

$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X])$.

$E[Y - \hat{Y}] = 0$ by linearity.

Also, $E[(Y - \hat{Y})X] = 0,$
Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).$$

Proof 1:
$$Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)
LLSE

LLSE[$Y|X]$ - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d.

Since: $\hat{Y} = \alpha + \beta X$ for some α, β,
LLSE

LLSE[\(Y|X\)] - best guess for \(Y\) given \(X\).

Theorem
Consider two RVs \(X, Y\) with a given distribution \(Pr[X = x, Y = y]\). Then,

\[
L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).
\]

Proof 1:
\(Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]).\) \(E[Y - \hat{Y}] = 0\) by linearity.

Also, \(E[(Y - \hat{Y})X] = 0\), after a bit of algebra. (next slide)

Combine brown inequalities: \(E[(Y - \hat{Y})(c + dX)] = 0\) for any \(c, d\).
Since: \(\hat{Y} = \alpha + \beta X\) for some \(\alpha, \beta\), so \(\exists c, d\) s.t. \(\hat{Y} - a - bX = c + dX\).
Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]).$$

$E[Y - \hat{Y}] = 0$ by linearity.

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d.

Since: $\hat{Y} = \alpha + \beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$.

Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall \alpha, \beta$.

LLSE

$LLSE[Y|X]$ - best guess for Y given X.

$LLSE[Y|X] - best\ guess\ for\ Y\ given\ X.$

Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]).$$

$E[Y - \hat{Y}] = 0$ by linearity.

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d.

Since: $\hat{Y} = \alpha + \beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$.

Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall \alpha, \beta$.

LLSE

LLSE[Y|X] - best guess for Y given X.

Theorem
Consider two RVs \(X, Y\) with a given distribution \(Pr[X = x, Y = y]\). Then,

\[
L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).
\]

Proof 1:
\(Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]).\) \(E[Y - \hat{Y}] = 0\) by linearity.

Also, \(E[(Y - \hat{Y})X] = 0\), after a bit of algebra. (next slide)

Combine brown inequalities: \(E[(Y - \hat{Y})(c + dX)] = 0\) for any \(c, d\).

Since: \(\hat{Y} = \alpha + \beta X\) for some \(\alpha, \beta\), so \(\exists c, d\) s.t. \(\hat{Y} - a - bX = c + dX\). Then, \(E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b.\)
LLSE

LLSE[Y|X] - best guess for Y given X.

Theorem
Consider two RVs X, Y with a given distribution \(Pr[X = x, Y = y] \).
Then,

\[
L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).
\]

Proof 1:
\[
Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]}(X - E[X]).
\]
\(E[Y - \hat{Y}] = 0 \) by linearity.

Also, \(E[(Y - \hat{Y})X] = 0 \), after a bit of algebra. (next slide)

Combine brown inequalities: \(E[(Y - \hat{Y})(c + dX)] = 0 \) for any \(c, d \).

Since: \(\hat{Y} = \alpha + \beta X \) for some \(\alpha, \beta \), so \(\exists c, d \) s.t. \(\hat{Y} - a - bX = c + dX \).
Then, \(E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b \). Now,

\[
E[(Y - a - bX)^2] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^2]
\]
LLSE

LLSE$[Y|X]$ - best guess for Y given X.

Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d.

Since: $\hat{Y} = \alpha + \beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y - a - bX)^2] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^2]$$

$$= E[(Y - \hat{Y})^2] + E[(\hat{Y} - a - bX)^2] + 0$$
LLSE \[Y | X \] - best guess for \(Y \) given \(X \).

Theorem

Consider two RVs \(X, Y \) with a given distribution \(Pr[X = x, Y = y] \). Then,

\[
L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]).
\]

Proof 1:

\[
Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]}(X - E[X]) = E[Y - \hat{Y}] = 0 \text{ by linearity.}
\]

Also, \(E[(Y - \hat{Y})X] = 0 \), after a bit of algebra. (next slide)

Combine brown inequalities: \(E[(Y - \hat{Y})(c + dX)] = 0 \) for any \(c, d \).

Since: \(\hat{Y} = \alpha + \beta X \) for some \(\alpha, \beta \), so \(\exists c, d \) s.t. \(\hat{Y} - a - bX = c + dX \).

Then, \(E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b. \) Now,

\[
E[(Y - a - bX)^2] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^2]
\]

\[
= E[(Y - \hat{Y})^2] + E[(\hat{Y} - a - bX)^2] + 0 \geq E[(Y - \hat{Y})^2].
\]
LLSE

$LLSE[Y|X]$ - best guess for Y given X.

Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:
\[Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]).\]
$E[Y - \hat{Y}] = 0$ by linearity.

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d.

Since: $\hat{Y} = \alpha + \beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$.

Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y - a - bX)^2] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^2]$$
$$= E[(Y - \hat{Y})^2] + E[(\hat{Y} - a - bX)^2] + 0 \geq E[(Y - \hat{Y})^2].$$

This shows that $E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2]$, for all (a, b).
Theorem
Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d.

Since: $\hat{Y} = \alpha + \beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$.

Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y - a - bX)^2] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^2]$$

$$= E[(Y - \hat{Y})^2] + E[(\hat{Y} - a - bX)^2] + 0 \geq E[(Y - \hat{Y})^2].$$

This shows that $E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2]$, for all (a, b).

Thus \hat{Y} is the LLSE.
LLSE

LLSE$[Y|X] -$ best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution $Pr[X = x, Y = y]$. Then,

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X, Y)}{var(X)}(X - E[X]).$$

Proof 1:

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X, Y)}{var[X]}(X - E[X]).$$

$E[Y - \hat{Y}] = 0$ by linearity.

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d

Since: $\hat{Y} = \alpha + \beta X$ for some α, β, so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y - a - bX)^2] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^2]$$

$$= E[(Y - \hat{Y})^2] + E[(\hat{Y} - a - bX)^2] + 0 \geq E[(Y - \hat{Y})^2].$$

This shows that $E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2]$, for all (a, b). Thus \hat{Y} is the LLSE.
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]} (X - E[X]) \].

Hence,
\[E[Y - \hat{Y}] = E[0] = 0. \]

We want to show that
\[E[(Y - \hat{Y})X] = 0. \]

Note that
\[E[(Y - \hat{Y})X] = E[(Y - E[Y])(X - E[X])] \],

because
\[E[(Y - \hat{Y})E[X]] = 0. \]

Now,
\[E[(Y - \hat{Y})(X - E[X])] = E[(Y - E[Y])(X - E[X])] - \text{cov}(X, Y) \frac{\text{var}[X]}{\text{var}[X]} = 0. \]

Recall that
\[\text{cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \]

and
\[\text{var}[X] = E[(X - E[X])^2] \].
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X,Y)}{\text{var}[X]} (X - E[X]). \]

Hence, \(E[Y - \hat{Y}] = 0 \).
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X,Y)}{\text{var}[X]} (X - E[X]). \]

Hence, \(E[Y - \hat{Y}] = 0 \). We want to show that \(E[(Y - \hat{Y})X] = 0 \).
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X,Y)}{\text{var}[X]} (X - E[X]). \]

Hence, \(E[Y - \hat{Y}] = 0. \) We want to show that \(E[(Y - \hat{Y})X] = 0. \)

Note that

\[E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])], \]
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X,Y)}{\text{var}[X]} (X - E[X]). \]

Hence, \(E[Y - \hat{Y}] = 0 \). We want to show that \(E[(Y - \hat{Y})X] = 0 \).

Note that

\[E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])], \]

because \(E[(Y - \hat{Y})E[X]] = 0 \).
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X, Y)}{\text{var}[X]} (X - E[X]). \]

Hence, \(E[Y - \hat{Y}] = 0 \). We want to show that \(E[(Y - \hat{Y})X] = 0 \). Note that

\[E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])], \]

because \(E[(Y - \hat{Y})E[X]] = 0 \).

Now,

\[
E[(Y - \hat{Y})(X - E[X])] \\
= E[(Y - E[Y])(X - E[X])] - \frac{\text{cov}(X, Y)}{\text{var}[X]} E[(X - E[X])(X - E[X])]
\]
A Bit of Algebra

\[Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]} (X - E[X]). \]

Hence, \(E[Y - \hat{Y}] = 0. \) We want to show that \(E[(Y - \hat{Y})X] = 0. \)

Note that
\[E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])], \]
because \(E[(Y - \hat{Y})E[X]] = 0. \)

Now,
\[
E[(Y - \hat{Y})(X - E[X])] = E[(Y - E[Y])(X - E[X])] - \frac{cov(X,Y)}{var[X]} E[(X - E[X])(X - E[X])]
\]
\[= (*) \ cov(X, Y) - \frac{cov(X,Y)}{var[X]} \ var[X] = 0. \]

\[(*) \text{ Recall that } cov(X, Y) = E[(X - E[X])(Y - E[Y])] \text{ and } \ var[X] = E[(X - E[X])^2]. \]
Discrete Probability.

Probability Space: Ω, $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Discrete Probability.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Discrete Probability.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Events: $A \subset \Omega$.
Discrete Probability.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Events: $A \subset \Omega$.

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.
Discrete Probability.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Events: $A \subset \Omega$.

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.
Discrete Probability.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Events: $A \subset \Omega$.

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.

Conditional Probability: $Pr[A | B] = \frac{Pr[A \cap B]}{Pr[B]}$.

Discrete Probability.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Events: $A \subset \Omega$.

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[A \cap \overline{B}]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

Discrete Probability.

Probability Space: Ω, $Pr: \Omega \rightarrow [0,1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Events: $A \subset \Omega$.

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution:
$\Pr[X = a] = \sum_{\omega : X(\omega) = a} \Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation:
$E[X] = \sum_a a \Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) \Pr(\omega)$

Linearity:

Variance:
$\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$.

For independent X, Y,
$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.

Also:
$\text{Var}(cX) = c^2 \text{Var}(X)$ and $\text{Var}(X + b) = \text{Var}(X)$.

Poisson:
$X \sim \text{P}(\lambda)$
$\Pr[X = i] = e^{-\lambda} \lambda^i i!$

$E(X) = \lambda$, $\text{Var}(X) = \lambda$.

Binomial:
$X \sim \text{B}(n, p)$
$\Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n - i}$

$E(X) = np$, $\text{Var}(X) = np(1 - p)$.

Uniform:
$X \sim \text{U}\{1, \ldots, n\}$
$\forall i \in [1, n], \Pr[X = i] = \frac{1}{n}$.

$E(X) = \frac{n + 1}{2}$, $\text{Var}(X) = \frac{n^2}{12}$.

Geometric:
$X \sim \text{G}(p)$
$\Pr[X = i] = (1 - p)^{i-1} p$

$E(X) = \frac{1}{p}$, $\text{Var}(X) = \frac{1 - p}{p^2}$.

Note: Probability Mass Function \equiv Distribution.
Random Variables

Random Variables: \(X : \Omega \rightarrow R \).
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$
Random Variables

Random Variables: \(X : \Omega \rightarrow \mathbb{R} \).

Distribution: \(Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega) \)
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Note: Probability Mass Function \equiv Distribution.
Random Variables

Random Variables: $X : \Omega \to \mathbb{R}$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Poisson

$X \sim P(\lambda)$

$Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$

$E(X) = \lambda$, $Var(X) = \lambda$.

Binomial

$X \sim B(n, p)$

$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$

$E(X) = np$, $Var(X) = np(1-p)$.

Uniform

$X \sim U\{1, \ldots, n\}$

$\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$

$E(X) = \frac{n+1}{2}$, $Var(X) = \frac{n^2 - 1}{12}$.

Geometric

$X \sim G(p)$

$Pr[X = i] = (1 - p)^i p$

$E(X) = \frac{1}{p}$, $Var(X) = \frac{1 - p}{p^2}$.

Note: Probability Mass Function \equiv Distribution.
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Random Variables

Random Variables: \(X : \Omega \rightarrow \mathbb{R} \).

Distribution: \(Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \(\iff \) all associated events are independent.

Expectation: \(E[X] = \sum_{a} a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega) \).

Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y \), \(Var(X + Y) = Var(X) + Var(Y) \).

Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda)$ \quad $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.
Random Variables

Random Variables: \(X : \Omega \to \mathbb{R} \).

Distribution: \(Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \iff \(\) all associated events are independent.

Expectation: \(E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega) \).

Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y \), \(Var(X + Y) = Var(X) + Var(Y) \).

Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).

Poisson: \(X \sim P(\lambda) \quad Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!} \).

\(E(X) = \lambda, \ Var(X) = \lambda. \)
Random Variables

Random Variables: \(X : \Omega \to \mathbb{R} \).

Distribution: \(Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \(\iff \) all associated events are independent.

Expectation: \(E[X] = \sum_{a} a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega) \).

Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y, \) \(Var(X + Y) = Var(X) + Var(Y) \).

Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).

Poisson: \(X \sim P(\lambda) \quad Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!} \).
\(E(X) = \lambda, \ Var(X) = \lambda. \)

Binomial: \(X \sim B(n, p) \)
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda)$ \hspace{1cm} $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.

$E(X) = \lambda$, $Var(X) = \lambda$.

Binomial: $X \sim B(n, p)$ \hspace{1cm} $Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda)$ \hspace{1em} $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.

$E(X) = \lambda$, $Var(X) = \lambda$.

Binomial: $X \sim B(n, p)$ \hspace{1em} $Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$

$E(X) = np$, $Var(X) = np(1 - p)$.
Random Variables

Random Variables: \(X : \Omega \rightarrow R. \)

Distribution: \(Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \(\iff \) all associated events are independent.

Expectation: \(E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega). \)

Linearity: \(E[X + Y] = E[X] + E[Y]. \)

Variance: \(\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y, \) \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y). \)

Also: \(\text{Var}(cX) = c^2 \text{Var}(X) \) and \(\text{Var}(X + b) = \text{Var}(X). \)

Poisson: \(X \sim P(\lambda) \quad Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}. \)

\(E(X) = \lambda, \text{Var}(X) = \lambda. \)

Binomial: \(X \sim B(n, p) \quad Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i} \)

\(E(X) = np, \text{Var}(X) = np(1 - p) \)

Uniform: \(X \sim U\{1, \ldots, n\} \)
Random Variables

Random Variables: \(X : \Omega \rightarrow \mathbb{R} \).

Distribution: \(Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \(\iff \) all associated events are independent.

Expectation: \(E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega) \).

Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y \), \(Var(X + Y) = Var(X) + Var(Y) \).

Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).

Poisson: \(X \sim P(\lambda) \) \quad \(Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!} \).

\(E(X) = \lambda, \ Var(X) = \lambda \).

Binomial: \(X \sim B(n, p) \) \quad \(Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i} \)

\(E(X) = np, \ Var(X) = np(1 - p) \)

Uniform: \(X \sim U\{1, \ldots, n\} \) \quad \forall i \in [1, n], \ Pr[X = i] = \frac{1}{n} \).
Random Variables

Random Variables: $X: \Omega \to R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda)$ $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.

$E(X) = \lambda$, $Var(X) = \lambda$.

Binomial: $X \sim B(n, p)$ $Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$

$E(X) = np$, $Var(X) = np(1 - p)$

Uniform: $X \sim U\{1, \ldots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$.

$E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2 - 1}{12}$.
Random Variables

Random Variables: $X: \Omega \to R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda)$ \hspace{1cm} $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.

$E(X) = \lambda$, $Var(X) = \lambda$.

Binomial: $X \sim B(n,p)$ \hspace{1cm} $Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}$

$E(X) = np$, $Var(X) = np(1-p)$

Uniform: $X \sim U\{1, \ldots, n\}$ \hspace{1cm} $\forall i \in [1,n], Pr[X = i] = \frac{1}{n}$.

$E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.

Geometric: $X \sim G(p)$
Random Variables

Random Variables: \(X : \Omega \rightarrow R \).

Distribution: \(Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \iff all associated events are independent.

Expectation: \(E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega) \).

Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y \), \(Var(X + Y) = Var(X) + Var(Y) \).

Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).

Poisson: \(X \sim P(\lambda) \)

\(Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!} \).

\(E(X) = \lambda, \ Var(X) = \lambda \).

Binomial: \(X \sim B(n, p) \)

\(Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i} \)

\(E(X) = np, \ Var(X) = np(1 - p) \)

Uniform: \(X \sim U\{1, \ldots, n\} \)

\(\forall i \in [1, n], Pr[X = i] = \frac{1}{n} \).

\(E[X] = \frac{n+1}{2}, \ Var(X) = \frac{n^2-1}{12} \).

Geometric: \(X \sim G(p) \)

\(Pr[X = i] = (1 - p)^{i-1} p \)
Random Variables

Random Variables: \(X : \Omega \rightarrow R \).

Distribution: \(Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega) \)

\(X \) and \(Y \) independent \iff \text{all associated events are independent.}

Expectation: \(E[X] = \sum a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega) \).

Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)

For independent \(X, Y \), \(Var(X + Y) = Var(X) + Var(Y) \).

Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).

Poisson: \(X \sim P(\lambda) \) \quad \(Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!} \).

\(E(X) = \lambda, \ Var(X) = \lambda \).

Binomial: \(X \sim B(n, p) \) \quad \(Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i} \)

\(E(X) = np, \ Var(X) = np(1 - p) \)

Uniform: \(X \sim U\{1, \ldots, n\} \) \quad \(\forall i \in [1, n], Pr[X = i] = \frac{1}{n} \).

\(E[X] = \frac{n+1}{2}, \ Var(X) = \frac{n^2-1}{12} \).

Geometric: \(X \sim G(p) \) \quad \(Pr[X = i] = (1 - p)^{i-1}p \)

\(E(X) = \frac{1}{p}, \ Var(X) = \frac{1-p}{p^2} \).
Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda)$ $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.

$E(X) = \lambda$, $Var(X) = \lambda$.

Binomial: $X \sim B(n, p)$ $Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$

$E(X) = np$, $Var(X) = np(1 - p)$

Uniform: $X \sim U\{1, \ldots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$.

$E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.

Geometric: $X \sim G(p)$ $Pr[X = i] = (1 - p)^{i-1}p$

$E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$

Note: Probability Mass Function \equiv Distribution.