Outline

1. Cryptosystems
2. One-Time Pad
3. Public key Cryptography
4. FLT + RSA
5. Digital Signatures
6. Attacks

Reminder

Midterm on Monday July 12th, 8pm PDT

More announcements in the upcoming week.
Alice wants to send a message (bitstring) to Bob.

She encrypts it and sends it as $E(m)$.

Eve can see $E(m)$.

Bob uses decryption function D to recover m.

Note: E and D often depend on some key k. E_k and D_k.

Goal: Make sure Eve cannot recover m, but Bob can.
One-Time Pad

XOR: Exclusive OR, denoted \(\oplus \)

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
<th>(Y)</th>
<th>(X \oplus Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(k \) is a bit string which is as long as \(m \)

Choose \(E_k(m) = m \oplus k \)

\(D_k(m) = m \oplus k \)

\[D_k(E_k(m)) = ((m \oplus k) \oplus k) = m \oplus (k \oplus k) = m \]

Only Alice and Bob can know \(k \).

Pro:
It works if Eve does not know \(k \)

Cons:
Cannot reuse the pad \(k \)

Alice and Bob need to decide on \(k \) beforehand.
Why can’t we reuse?

\[E(m_1) = m_1 \oplus k \]
\[E(m_2) = m_2 \oplus k \]

Eve can see these.

Eve can compute:

\[
(m_1 \oplus k) \oplus (k \oplus m_2)
\]

\[
= m_1 \oplus m_2
\]

Info leaked for \(m_1, m_2 \).
Public key Cryptography

Can send messages securely without having to meet privately first!
Fermat's Little Theorem (FLT)

For any prime p and any $a \in \mathbb{Z} \setminus \{0\}, \ldots, p-1$, we have $a^{p-1} \equiv 1 \pmod{p}$

Proof

Observing that $f(x) = ax \pmod{p}$ is a bijection from S to S

This is because $\gcd(a, p) = 1$, so

$$a^i = a^j \pmod{p} \implies i \equiv j \pmod{p}$$

So, f maps each element of S to a distinct value in S

$$\implies \prod_{i \in S} i \equiv \prod_{i \in S} a \cdot i \pmod{p}$$

$$\Rightarrow (p-1)! \equiv a^{p-1} (p-1)! \pmod{p}$$

$$1 \equiv a^{p-1} \pmod{p}$$
RSA \textcircled{Rivest, Shamir, Adleman}

Start of with two primes \(p \) and \(q \).

\textbf{Public key (Treasure Box)}

\((N, e)\)

\(N := pq\)

\(e\) is a number such that \(\text{gcd}(e, (p-1)(q-1)) = 1\)

\textbf{Private key}

\(d := e^{-1} \pmod{(p-1)(q-1)}\)

\(E(x) = x^e \pmod{N}\)

\(D(y) = y^d \pmod{N}\)

Correctness: \(D(E(x)) = x\) ?

\((xe)^d \equiv x \pmod{N}\)

\(x^{ed} - x \equiv 0 \pmod{N}\)

Note: \(ed \equiv 1 \pmod{(p-1)(q-1)} \Rightarrow ed = 1 + k(p-1)(q-1)\)
\[
x - x \equiv 0 \pmod{N}
\]

\[
x \left(x^{k(p-1)(q-1)} - 1 \right) \equiv 0 \pmod{N}
\]

Approach: show divisibility by \(p \) and by \(q \) separately.

Case 1: \(x \) is divisible by \(p \)

Case 2:

\[
x \left(x^{k(p-1)(q-1)} - 1 \right) \pmod{p}
\]

\[
\equiv x \left(\left(x^{(p-1)(q-1)} \right)^k - 1 \right) \pmod{p}
\]

\[
\uparrow \text{FLT}
\]

\[
\equiv x \left(1 - 1 \right) \pmod{p}
\]

\[
\equiv 0 \pmod{p}
\]

Similarly, the expression is also divisible by \(q \).

So, it is divisible by \(N = pq \)

\[
\Rightarrow x \left(x^{k(p-1)(q-1)} - 1 \right) \equiv 0 \pmod{N}
\]
Why does RSA work?

1. Assumes N is too large to brute force x^e for each x and check if the encoded message matches.

2. Assumes d can’t be computed without extracting p and q from N (factoring N is hard).
RSA Example (from Notes)

\[p = 5 \]
\[q = 11 \]
\[N = 5 \cdot 11 = 55 \]

Say \(e = 3 \), \(\gcd(e, 40) = 1 \)

Bob:

Public key: \((N, e) = (55, 3)\)

Private key: \(3^{-1} \mod 40\)

\[40 = 3 \cdot 13 + 1 \]

\[40 \cdot 1 - 13 \cdot 3 = 1 \]

\[d = -13 = 27 \mod 40 \]

Alice can then send \(x \) as \(E(x) = x^3 \mod 55 \)

Bob will decrypt this as \(D(y) = y^{27} \mod 55 \)

Example:

\[x = 13 \]
\[E(x) = 13^3 \mod 55 = 82 \]

\[D(82) = 82^{27} \equiv 13 \mod 55 \]
Digital Signatures

Trusted

You

Certificate Authority (CA) Amazon.com

(N, e)

1. \(m = \text{"This is Amazon"} \)

2. Signed by CA: \(CA = \frac{m^d}{s} \)

3. You can check using \((N, e)\):

\[
se = m^d e \equiv m \pmod{N}
\]

Checks out, CA did confirm/sign.
RSA Attack

Replay Attack Example

I send $E(m)$ to Amazon to make purchase.

Eve reads $E(m)$, and sends it to Amazon again.

Now I got charged twice :(

Solution

Send $E(\text{concatenate}(m, s))$ where

s is a random string.

If Amazon gets the same message twice, it will just reject the second one.
RSA Sampling Primes

Prime Number Theorem states that

\[\# \text{ of primes} \leq N \text{ is at least } \frac{N}{\ln(N)} \]

Go through all numbers less than \(N \) and check if they are prime.

There exists an efficient algorithm that tests if \(N \) is prime

(polynomial time in the number of bits)

Note: Want \(p \) and \(q \) to be very large \(\rightarrow 512 \text{ bits each} \).
\[x \equiv 20 \pmod{30} \]
\[x = 20 + 30k \]

\[ed \equiv 1 \pmod{(p-1)(q-1)} \]

\[\Rightarrow ed = 1 + k(p-1)(q-1) \]