1. Polynomial Definition
 1. Property 1
 4. Property 2
2. Polynomial Interpolation
3. Property 2 Proof
4. Polynomial Division
5. Property 1 Proof
6. Finite Fields
7. Counting
8. Secret Sharing
9. CRT vs Lagrange Comparison

HW2 Q1 was updated w/ Gradbase Quiz
Polynomial Definition

\[p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_1 x + a_0 \]

\(x \) is a variable

\(a_i \) are coefficients

The degree \(d \) is the exponent of the highest order term.

Ex: \[p(x) = x^2 - 41 \]

Property 1

Property 2
Polynomial Interpolation

Given $d+1$ pairs $(x_i, y_i) \ldots (x_{d+1}, y_{d+1})$, what is the unique degree (at most) d polynomial that goes through those points?
Polynomial Interpolation Example

\((x_1, y_1) = (1, 1)\)
\((x_2, y_2) = (2, 2)\)
\((x_3, y_3) = (3, 4)\).
Property 2

Given d+1 pairs \((x_i, y_i)\) ... \((x_{d+1}, y_{d+1})\), with all \(x_i\) distinct, there is a unique polynomial \(p(x)\) of degree (at most) \(d\) such that \(p(x_i) = y_i\) for \(1 \leq i \leq d+1\).

Proof:
Polynomial Division

Let \(p(x) \) be a polynomial of degree \(d \).

Can divide \(p(x) \) by polynomial \(q(x) \) of degree \(\leq d \) using long division.

\[
p(x) = q(x) \cdot q(x) + r(x)
\]

- \(q(x) \): Quotient
- \(r(x) \): Remainder \(\text{deg} \ r(x) \) is less than \(\text{deg} \ q(x) \).

Example:

Proof of Property 1

Property 1

A nonzero polynomial of degree d has at most d roots.

Proof:

Claim 1: If a is a root of a polynomial $p(x)$ with degree $d \geq 1$, then $p(x) = (x-a)q(x)$ for a polynomial $q(x)$ with degree $d-1$.

Claim 2: A polynomial $p(x)$ of degree d with distinct roots a_1, \ldots, a_d can be written as $p(x) = c(x-a_1)\ldots(x-a_d)$ where c is a real number $(c \neq 0)$.

Note: Claim 2 \Rightarrow Property 1

Also, $p(x)$ cannot have some other root $a \neq a_i$ for $i = 1, \ldots, d$ since $p(a) = c(a-a_1)\ldots(a-a_d) \neq 0$.

Proof of Claim 2
Proof of Claim 2
Finite Fields

So far, we just used $+, -, \times, \div$

If m is prime, then these operations still

\[
\text{work } \mod m
\]

coefficient must be values $\mod m$

variable must be values $\mod m$

Consider $p(x) = 2x + 3 \pmod{5}$

```
\[
\begin{array}{c|cccc}
  x & 1 & 2 & 3 & 4 \\
  \hline
  y & 1 & 3 & 2 & 1 \\
\end{array}
\]
```

Working $\mod m$ where m is prime

"working in a finite field"

$GF(m)$ "Galois Field"

Note: No fractions when working $\mod m$,

use multiplicative inverses!
Cantor

How many degree 1 polynomials are there when working mod m?
Secret Sharing

Share nuclear launch codes such that

1. Any subset of \(k \) officials can compute code and launch together.

2. No group of \(k - 1 \) or fewer have any info about the code if they pool their info together.