Administrivia

Course evaluations at 26.05%. If they hit 30%, everyone gets an additional homework drop.
Recap

Theorem (Markov's Inequality) For any nonnegative random variable \(X \) and \(a > 0 \),
\[
P(X > a) \leq \frac{E[X]}{a}
\]

Theorem (Chebyshev's Inequality) For any random variable \(X \) with expectation \(\mu \) and variance \(\sigma^2 < \infty \),
\[
P(|X - \mu| \geq c) \leq \frac{\text{Var}[X]}{c^2}
\]
[\(X \) is more than a distance of \(c \) from its mean]

Note: Normal Random Variables
For \(X \sim \text{Normal}(\mu, \sigma^2) \) and \(Z \sim \text{Normal}(0, 1) \),
\[
\frac{X - \mu}{\sigma}
\]
The density of \(Z \) is symmetric \((\phi(z) = \phi(-z))\), so

For \(x_1, \ldots, x_n \) iid with mean \(\mu \) and variance \(\sigma^2 \),
Estimation

Def: An estimator is a
The bias of an estimator is
\[\text{Bias}[\hat{X}] = \]
We say an estimator is unbiased if

Ex: Suppose \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p) \) for unknown parameter \(p \). Construct an unbiased estimator for \(p \).

Ex: Suppose \(X_1, \ldots, X_n \) are iid with unknown expectation \(\mu \) and variance \(\sigma^2 \). Construct an unbiased estimator for \(\mu \).

Note: Generally, for an estimator \(\hat{X} \) of \(\theta \), we want that
Chebyshev Confidence Intervals

Def: For $0 < \delta < 1$, a $(1-\delta)$ confidence interval for a fixed parameter θ is

Q. We flip a biased coin that flips heads with probability p n times. Let X_1, \ldots, X_n be the results of the flips. Construct an unbiased estimator for p.

Construct a $(1-\delta)$ confidence interval for p.
Chebyshev Confidence Intervals II

Q We flip a biased coin that flips heads with probability p n times. Let X_1, \ldots, X_n be the results of the flips.
Suppose $n=1000$ and 120 of the flips are heads. Construct the 95% confidence interval.

Q Suppose X_1, \ldots, X_n are iid with unknown expectation μ and known variance $\sigma^2 = 3$.
Find n such that a 98% confidence interval has error at most 0.01.
Normal Confidence Intervals 1

Let \(X_1, \ldots, X_n \) be iid with expectation \(\mu \) and variance \(\sigma^2 \in (0, \infty) \). What is the approximate distribution of \(\bar{X} = \frac{1}{n} \sum X_i \) for large \(n^2 \)?

Suppose \(n \) is large. Construct a \((1-\delta)\) confidence interval for \(\mu \), the population mean.

Note: When the sample size is large, the sample standard deviation is a good approximation for \(\sigma \).
Normal Confidence Intervals 1

Q: We flip a biased coin that flips heads with probability p n times. Let $X_1, ..., X_n$ be the results of the flips. Suppose $n=1000$ and 120 of the flips are heads. Construct the 95% confidence interval.
Law of Large Numbers

Note: We have seen that the variance in \bar{X} decreases as the sample size increases.

The (Law of Large Numbers) Let X_1, \ldots, X_n be iid with expectation $\mu < \infty$. Let the sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

For any $\epsilon > 0$,

$$P(|\bar{X} - \mu| \leq \epsilon) \to 1 \text{ as } n \to \infty$$

Ex: I flip a biased coin with unknown probability p of heads.
Consider the distribution of \bar{X} for various values of n.

[Demo]