Markov Chains

Definition (Markov Property) A process X_0, X_1, \ldots obeys the Markov Property if

Example: Consider the process of flipping a coin that flips heads with probability p until we see two consecutive heads.

Claim: For X_0, X_1, \ldots a Markov chain on S and $i_0 i_1 \ldots i_n$ in a sequence of states visited,

Example: Consider the process of flipping a coin that flips heads with probability p until we see two consecutive heads.

$P(X_0 = H) = \ldots$

$P(X_0 = T) = \ldots$

$P(HTTHHT) = \ldots$
Definition (Transition Matrix) The one-step transition matrix of a chain is

Example Consider the process of flipping a coin that flips heads with probability p until we see two consecutive heads.

Claim The n-step transition matrix P_n is

Example Consider the process of flipping a coin that flips heads with probability p until we see two consecutive heads. The transition matrix P is

$$
P = \begin{bmatrix}
T & R & M \\
q & p & 0 \\
q & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}
$$
Distribution over Time

Let \(\pi_0 \) be the initial distribution over the state space written as a row vector.

\[\pi_0 \]

Note: To specify a Markov chain, you need
Hitting Time

Q. Suppose you repeatedly flip a coin with probability p of heads until you see two consecutive heads. What is the expected number of flips it will take?

Note: Let X_0, X_1, \ldots be a finite Markov chain on state space S with transition matrix P.
A Before B

Q. We repeatedly roll a six-sided die and sum the rolls modulo 3 as we go. What is the chance our sum hits 1 before it hits 2?

Q. Consider a sequence of iid trials, each of which results in n mutually exclusive categories outcomes. On each trial, let the chance of category i be $p_i > 0$. What is the chance category i appears before category j?

Note: Let $X_0, X_1, ...$ be a finite Markov chain on state space S with transition matrix P.
Examples

1. An ant is sitting at the corner of a cube. At each timestep, she traverses an edge uniformly at random. What is the expected time until she reaches the other end of the cube?