A Markov chain is a collection of random variables X_0, X_1, \ldots over the same probability space with a common state space S such that

\[
\mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_0, X_1 = i_1, \ldots, X_{n-1} = i_{n-1}, X_n = i_n) = \mathbb{P}(X_{n+1} = i_{n+1} \mid X_n = i_n)
\]

for any $i_0, i_1, \ldots, i_{n+1} \in S$.

In this class, a Markov chain is specified by:

1. A finite state space S: $|S| < \infty$
2. A time-homogeneous transition matrix P:
 \[
P(i, j) = \mathbb{P}(X_{n+1} = j \mid X_n = i) = \mathbb{P}(X_{n+1} = j \mid X_n = i)\text{ for all } n \geq 0.
 \]
3. An initial distribution π_0:
 \[
 \sum_{k \in S} \pi_0(k) = 1
 \]

Thus, let P_n be the n-step transition matrix $P_n(i, j) = \mathbb{P}(X_n = j \mid X_0 = i)$.

Let π_n be the distribution over the states after n steps.

Then

\[
P_n = P^n
\]

and

\[
\pi_n = \pi_0 P^n
\]
Then let \(\mathcal{A}, \mathcal{B} \subset \mathcal{S} \) be mutually exclusive. Let \(T_{\mathcal{A}}, T_{\mathcal{B}} \) be the times until we visit a state in \(\mathcal{A} \) and \(\mathcal{B} \), respectively.

Define
\[
\alpha(i) = \mathbb{P}(T_{\mathcal{A}} < T_{\mathcal{B}} \mid X_0 = i), \quad \beta(i) = \mathbb{E}[T_{\mathcal{A}} \mid X_0 = i].
\]

Then
\[
\alpha(i) = 1 \text{ if } i \in \mathcal{A} \\
\alpha(i) = 0 \text{ if } i \in \mathcal{B} \\
\alpha(i) = \sum_{j \in \mathcal{S}} \mathbb{P}(T_{\mathcal{A}} < T_{\mathcal{B}}, X_0 = i, X_1 = j) \cdot \mathbb{P}(X_1 = j \mid X_0 = i) \\
= \sum_{j \in \mathcal{S}} \mathbb{P}(T_{\mathcal{A}} < T_{\mathcal{B}} \mid X_0 = i, X_1 = j) \cdot \mathbb{P}(X_1 = j \mid X_0 = i) \\
= \sum_{j \in \mathcal{S}} \mathbb{P}(T_{\mathcal{A}} < T_{\mathcal{B}} \mid X_0 = j) \cdot \mathbb{P}(i, j) \text{ by homogeneity} \\
= \sum_{j \in \mathcal{S}} \alpha(j) \cdot \mathbb{P}(i, j) \text{ if } i \in \mathcal{A}, i \not\in \mathcal{B}.
\]

\[
\beta(i) = 0 \text{ if } i \in \mathcal{A} \\
\beta(i) = \sum_{j \in \mathcal{S}} \mathbb{E}[T_{\mathcal{A}} \mid X_0 = i, X_1 = j] \cdot \mathbb{P}(X_1 = j \mid X_0 = i) \\
= \sum_{j \in \mathcal{S}} (1 + \mathbb{E}[T_{\mathcal{A}} \mid X_0 = j]) \cdot \mathbb{P}(i, j) \text{ by homogeneity} \\
= \sum_{j \in \mathcal{S}} \mathbb{P}(i, j) + \sum_{j \in \mathcal{S}} \beta(j) \cdot \mathbb{P}(i, j) \\
= 1 + \sum_{j \in \mathcal{S}} \beta(j) \cdot \mathbb{P}(i, j) \text{ if } i \not\in \mathcal{A}.
\]

Then let \(V_A \) be the number of times a state in \(\mathcal{A} \) is visited.

Define
\[
\delta(i) = \mathbb{E}[V_A \mid X_0 = i].
\]

Then
\[
\delta(i) = 1 + \sum_{j \in \mathcal{S}} \delta(j) \cdot \mathbb{P}(i, j) \text{ if } i \in \mathcal{A} \\
\delta(i) = \sum_{j \in \mathcal{S}} \delta(j) \cdot \mathbb{P}(i, j) \text{ if } i \not\in \mathcal{A}.
\]

Note: \(\mathbb{E}[V_A] \) may be infinite.
Compartmental Model

Ex. Suppose that for some disease, the population can be split into three groups: susceptible, infected, and removed.
Each day,
- of the susceptible, 20% become infected;
- of the infected, 20% become susceptible;
- of the removed, \(p \) become susceptible
- 80% stay susceptible;
- 10% become removed;
- \(1-p \) stay infected.
In the population prior to exposure, 95% are susceptible and 5% are removed.
We can model this as a Markov process:
\[
S = \{ S, I, R \}
\]
\[
\begin{bmatrix}
S & I & R \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
0.8 & 0.2 & 0 \\
0.2 & 0.7 & 0.1 \\
p & 0 & 1-p \\
\end{bmatrix}
\]
\[
\pi_0 = \begin{bmatrix}
0.95 & 0 & 0.05 \\
\end{bmatrix}
\]
Invariant Distributions

Def: A distribution \(\pi \) is invariant for transition matrix \(\mathbf{P} \) if
\[
\pi = \pi \mathbf{P}
\]
These equations are called the balance equations.

Thm: \(\pi_n = \pi_0 \) for all \(n \geq 0 \) if and only if \(\pi_0 \) is invariant.

Pf: Suppose \(\pi_n = \pi_0 \) for all \(n \geq 0 \). Then
\[
\pi_i = \pi_0 \mathbf{P}^n = \pi_0,
\]
so 0 is invariant.

Suppose \(\pi_0 = \pi_0 \mathbf{P} \). Then
\[
\pi_i = \pi_0 \mathbf{P} = \pi_0
\]
\[
\pi_{in} = \pi_{in} \mathbf{P} = \pi_0
\]
By induction, \(\pi_n = \pi_0 \) for all \(n \geq 0 \).

Note: A Markov chain may have many invariant distributions. For example, \(\mathbf{P} = \mathbf{I} \) has infinitely many.

Note: Invariance means that the net flow in and out of states is equal.

\[
\pi(i) \text{ of the particles are leaving state } 0
\]
\[
\pi(0) \mathbf{P}(0,0) + \pi(1) \mathbf{P}(1,0) + \pi(2) \mathbf{P}(2,0) + \pi(3) \mathbf{P}(3,0) \text{ are entering state } 0
\]
The balance equations say these flows are equal:
\[
\pi(i) = \sum_{j \in S} \pi(j) \cdot \mathbf{P}(j,i)
\]

\[
\text{up}
\]
\[
\text{leaving i}
\]
\[
\text{entering i}
\]
Irreducibility

Def. We say i can reach j (i → j) if there is a path with positive probability from i to j.

A Markov chain is irreducible if

∀i,j i→j and j→i (you can get from any state to any state)

Ex. Which of the following chains is irreducible?

- [Diagram of chain 1 showing reducible with paths 0 → 1 (Reducible), 1 → 0 (Reducible), 0 → 2 (Reducible), Irreducible]

To show a chain is irreducible, construct a path that:

- starts at any state
- goes through all of the other states
- ends at the starting state
- has positive probability

- [Diagram of a path 0 → 1 → 3 → 2 → 3 → 0]
Long Run Proportion of Time

Then If a finite Markov chain is irreducible, then, for any initial distribution \(\pi_0 \),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} 1\{X_i = i\} = \pi(i) \text{ for all } i \in S
\]

That is, the fraction of time spent in each state is given by \(\pi \).
Also, \(\pi \) is invariant; therefore the invariant distribution exists and is unique.

Proof: Because the chain is irreducible, each state will be visited infinitely many times.
For each state \(i \), let \(T_i \) be the number of steps to return to \(i \) starting with \(X_0 = i \). Then let

\[
\pi(i) = \frac{1}{E[T_i]}, \text{ the fraction of time spent in state } i
\]

So the fraction of time the chain spends in state \(i \) is \(\pi(i) \), as desired.
Now, \(\pi \) is invariant. Note that in \(n \) steps, the chain is in state \(i \) for \(n \pi(i) \) steps.
Over large \(n \), the chain transitions from any state \(j \) to \(i \)

\[
n \pi(j) \cdot P(j,i)
\]

in state transition from \(j \) to \(i \) times. The total visits to state \(i \) is the sum of all visits from the states:

\[
n \pi(i) = \sum_{j \in S} n \pi(j) P(j,i)
\]

This can be written as \(\pi = \pi P \).
Proof of uniqueness is more complicated.

Note: An irreducible Markov chain's distribution does not necessarily converge to \(\pi \):

The chain spends half the time in each state, but every initial distribution does not converge to \([1/2, 1/2]\), e.g.,

\[
[0,1] \to [1,0] \to [0,1] \to ...
\]

This is because of the periodic behavior of the chain.
Periodicity

Def: The period of a state i, denoted $d(i)$, is

$$d(i) = \gcd \{ n : P^n(i, i) > 0 \};$$

that is, the period of a state is the greatest common divisor of the lengths of paths from i to i.

In this class we only consider the period of states in irreducible chains.

Ex: Find $d(i)$ for each of the following chains.

- $1 \to 2 \to 1$; $1 \to 2 \to 1 \to 2 \to 1$

 $d(1) = \gcd \{2, 4, 6, \ldots \} = 2$

- $1 \to 0 \to 1$; $1 \to 3 \to 0 \to 1$

 $d(1) = \gcd \{2, 3, \ldots \} = 1$

- $1 \to 2 \to 0 \to 1$; $1 \to 2 \to 0 \to 2 \to 1$

 $d(1) = \gcd \{3, 4, \ldots \} = 1$

Claim: If a Markov chain is irreducible, the periods of all states are the same.

$d(i) = d(j)$ for all $i, j \in S$.

Proof: As an exercise.

Def: If $d(i) = 1$ for any state in an irreducible Markov chain, we say the chain is aperiodic.

Ex: Which of the following chains is aperiodic?

- Periodic, since $d(1) = 2$

- Aperiodic, since $d(1) = 1$

- Aperiodic, since $d(1) = 1$

To show a chain is aperiodic, find two loops with coprime lengths.
Markov Chain Convergence Theorem

Theorem (Finite Markov Chain Convergence) If \(X_0, X_1, \ldots \) is a Markov chain on \(S \) with time-homogeneous transition matrix \(P \) and

1. \(|S| < \infty \)
2. \(P \) is irreducible: \(\forall i, j \in S, \exists n \in \mathbb{N} : P^n(i, j) > 0 \)
3. \(P \) is aperiodic: \(\forall i \in S, a(i) = 1 \),

then \(X_0, X_1, \ldots \) has an invariant distribution \(\pi = \pi P \) such that

\[
\lim_{n \to \infty} P^n(i, j) = \pi(j)
\]

i.e. the \(n \)-step transition probabilities converge to \(\pi \).

Moreover,

\[
\lim_{n \to \infty} \frac{1}{n} E[T_j] = \pi(j),
\]

i.e. \(\pi(j) \) is the long-run proportion of time spent in state \(j \).

Corollary (Ergodicity)

\[
\pi_n(i) = P(x_n = i) \to \pi(i) \text{ as } n \to \infty
\]

\[
\pi_n(i) = \sum_{j \in S} \pi_0(j) P_n(j, i)
\]

\[
\to \sum_{j \in S} \pi_0(j) \pi(i) \text{ as } n \to \infty
\]

\[
= \pi(i) \sum_{j \in S} \pi_0(j)
\]

\[
= \pi(i)
\]

Note: We can find the long-run probability of an event by conditioning on \(\pi \).

\[
\begin{array}{ccc}
\nu_2 & \circ & \nu_4 \\
0 \quad 0.75 \\
\end{array}
\]

\(\pi = \left[\frac{1}{3}, \frac{2}{3} \right] \)

What is the long-run probability that we stay in the same state?

\[
P(\text{stay}) = P(\text{stay} | \text{state 0}) \cdot P(\text{state 0}) + P(\text{stay} | \text{state 1}) \cdot P(\text{state 1})
\]

\[
= \frac{1}{2} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{2}{3}
\]

\[
= \frac{3}{3}
\]
In the Ehrenfest model, there are two containers, containing a total of \(N \) particles.

At each step:
- a container is selected uniformly at random,
- a particle is selected uniformly at random, independently of the container,
- and the selected particle is placed in the selected container; if the particle was already in the container, it remains in place.

Let \(X_n \) be the number of particles in the first container at time \(n \).

What are the transition probabilities of the chain?

The number of particles can either increase by 1, decrease by 1, or remain the same.

\[
P(X_{n+1} = i+1 \mid X_n = i) = \frac{1}{2} \cdot \frac{N-i}{N} = \frac{N-i}{2N}
\]

\[
P(X_{n+1} = i-1 \mid X_n = i) = \frac{1}{2} \cdot \frac{i}{N} = \frac{i}{2N}
\]

\[
P(X_{n+1} = i \mid X_n = i) = 1 - \frac{i}{2N} - \frac{N-i}{2N} = \frac{1}{2}
\]

So

\[
P(i,i) = \begin{cases}
\frac{N-i}{2N} & \text{if } i = i+1 \\
\frac{i}{2N} & \text{if } i = i \\
\frac{i}{2N} & \text{if } i = i-1 \\
0 & \text{otherwise}
\end{cases}
\]

Prove that any distribution over the states converges to some distribution \(\pi \).

We must show that the chain is irreducible and aperiodic.

Irreducible: Consider the path \(0 \to 1 \to 2 \to \ldots \to N \to N-1 \to \ldots \to 0 \).

Aperiodic: Note that \(a(i) = \gcd\{1, \ldots, i\} = 1 \). So all states have period 1.
In the Ehrenfest model, there are two containers, containing a total of \(N \) particles. At each step:
- A container is selected uniformly at random.
- A particle is selected uniformly at random, independently of the container.
- The selected particle is placed in the selected container; if the particle was already in the container, it remains in place.

Let \(X_n \) be the number of particles in the first container at time \(n \).

Find the stationary distribution of the chain.

The balance equations are:

\[
\pi(0) = \frac{1}{2} \pi(0) + \frac{1}{2N} \pi(1)
\]

\[
\pi(j) = \frac{N-(j-1)}{2N} \pi(j-1) + \frac{1}{2} \pi(j) + \frac{j}{2N} \pi(j+1) \quad \text{for} \quad 1 \leq j \leq N-1
\]

\[
\pi(N) = \frac{1}{2N} \pi(N-1) + \frac{1}{2} \pi(N)
\]

Rewrite the first few equations in terms of \(\pi(0) \)

\(\pi(0) = \frac{1}{2} \pi(0) + \frac{1}{2N} \pi(1) \Rightarrow \pi(1) = N\pi(0) = \binom{N}{1} \pi(0) \)

\(\pi(1) = \frac{N}{2N} \pi(0) + \frac{1}{2} \pi(1) + \frac{2}{2N} \pi(2) \Rightarrow \pi(2) = \frac{N}{2} (\pi(1) - \pi(0)) = \frac{N(N-1)}{2} \pi(0) = \binom{N}{2} \pi(0) \)

By induction, \(\pi(j) = \binom{N}{j} \pi(0) \).

Then:

\[
\sum_{j=0}^{N} \pi(j) = \sum_{j=0}^{N} \binom{N}{j} \pi(0) = \pi(0) \sum_{j=0}^{N} \binom{N}{j} = \pi(0) 2^N = 1 \Rightarrow \pi(0) = \frac{1}{2^N}
\]

So:

\(\pi(k) = P(X_n = k) = \binom{N}{k} \frac{1}{2^N} \),

i.e. \(\pi(k) \sim \text{Binomial}(N, \frac{1}{2}) \).