A: Is it possible to start and end at Sather Gate, such that you visit each Oski exactly once?

- possible
- impossible
1. Graphs

Def An (undirected simple) graph $G = (V, E)$ is defined by

- a set of vertices V and a set of edges E, where elements in E are of form \(\{u, v\} \) where $u, v \in V$, $u \neq v$.

Eq. 1

\[
\begin{align*}
V & = \{A, B, C, D\}, \\
E & = \{\{A, B\}, \{B, D\}, \{A, C\}\}.
\end{align*}
\]

- No multiple edges
- Not a simple graph, b/c.
- Not a simple graph, b/c, \(\{A, A\} \) not a set.

Rem. To model a directed graph $G = (V, E)$, we can define

\[E \subseteq V \times V. \]

Def Given an edge $e = \{u, v\}$, we say $u \xrightarrow{e} v$

- e is **incident** on vertices u and v;
- u and v are **neighbors** or **adjacent**.

The degree of a vertex u is $|\{v \in V : \{u, v\} \in E\}|$.

Thm (The handshaking theorem) Let $G = (V, E)$ be a graph with m edges. Then $2m = \sum_{v \in V} \deg(v)$.

Pf: Let N be the number of pairs (v, e) such that v is an endpoint of e.

Since each v belongs to $\deg(v)$ pairs, $\sum_{v \in V} \deg(v) = N$.

On the other hand, each edge belongs to 2 pairs, so $N = 2m$.

Hence, $2m = \sum_{v \in V} \deg(v)$. \blacksquare

1.1 Eulerian Tours

Def. A **walk** is a sequence of edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_n, v_{n+1}\}$.

A **tour** is a walk that has no repeated edges, starts and ends at the same vertex.

A **Eulerian tour** is a tour that visits each edge exactly once.

Rem. A walk can be specified by a sequence of vertices in the order of visit.

E.9.0 An Eulerian tour in $\begin{array}{c} 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1 \end{array}$ is $1, 2, 3, 4, 5, 3, 1$.

\[\begin{array}{c} 1 \end{array} \]
A graph is connected if there exists a path between any distinct \(u, v \in V \).

A connected graph \(G \) has an Eulerian tour iff every vertex has even degree.

\(\text{Pf: } 1 \) ("\(\Rightarrow \)") Assume \(G \) has an Eulerian tour starting at \(v_0 \).

For all \(v \in V \), pair up the two edges each time we enter and exit.

For \(v_0 \), additionally pair up the starting edge, and the ending edge.

Eulerian tour visits all edges exactly once,

\(\Rightarrow \forall v \in V \), incident edges are paired

\(\Rightarrow \forall v \in V \), \(\deg(v) \) is even.

\(2 \) ("\(\Leftarrow \)") Assume every vertex in \(G \) has even degree.

Goal: Find an Eulerian tour.

Step 1: Pick an arbitrary \(v_0 \in V \) to start.

Keep following unvisited edges until stuck.

\(S, E, C, S, M, S \) is not an Eulerian tour because \(\{ M, E \} \) is not visited.
All degrees even \Rightarrow stuck at V_0.

Step 2: Remove this tour.

Recurse on connected components.

Step 3: Splice the recursive tours into the main one to get a Eulerian tour.

E.g. Use the algorithm above to find an Eulerian tour in the following graph.
2. Special Graphs

2.1 Complete Graphs

A complete graph with \(n \) vertices, denoted \(K_n \), is a graph that contains every possible edge.

E.g. \(K_5 \)

2.2 Bipartite Graphs

A bipartite graph partitions vertices \(V \) into two disjoint sets \(V_1 \) and \(V_2 \) such that \(E \subseteq \{ \{ u, v \} : u \in V_1, v \in V_2 \} \).

A complete bipartite graph has \(E = \{ \{ u, v \} : u \in V_1, v \in V_2 \} \), denoted \(K_{m,n} \).

E.g. \(K_{3,3} \)
2.3. Hypercubes

An n-dim hypercube, denoted Q_n, has a vertex for each length-n bit string, and an edge between a pair of vertices iff they differ in one bit.

Rem. Hypercubes can be constructed recursively. To build Q_{n+1} from Q_n,

- make two copies of Q_n,
- prefacing 0 for one copy and 1 for the other,
- add edges between copies of corresponding vertices.

E.g. Q_1, Q_2, Q_3

2.4. Trees

Def. A cycle is a tour, s.t. the only repeated vertex is the start and end vertex.

Def. A tree is a connected, acyclic graph.

A leaf is a vertex of degree 1.
Rem. Try to prove leaf lemmas:

"every tree has at least one leaf" and
"a tree minus a leaf remains a tree".

They allow us to do induction on trees!!!

Thm

T is a tree connected, no cycle.

\[\iff \quad T = (V, E) \text{ is connected and has } |V| - 1 \text{ edges} \]

Pf:

1. ("\(\Rightarrow\)"") We'll do induction on \(n = |V|\), i.e.,

 \[P(n) : \text{tree } T \text{ has } n \text{ vertices } \Rightarrow T \text{ has } n-1 \text{ edges}. \]

 Base case: \(n=1. \quad n-1=0. \quad \checkmark \)

 \[P(n-1) \Rightarrow P(n). \]

 Inductive Step: Suppose \(T\) has \(n\) vertices.

 - By leaf lemmas, we can remove a leaf & its incident edge to get
 a tree \(T'\) with \(n-1\) vertices.

 - By IH, \(T'\) has \((n-1)-1 = n-2\) edges.

 \[\Rightarrow T \text{ has } n-2+1 = n-1 \text{ edges}. \]

2. ("\(\Leftarrow\)"") We'll do induction on \(n=|V|\).

 \[P(n) : T \text{ is connected, has } n-1 \text{ edges } \Rightarrow T \text{ is a tree} \]

 Base case: \(n=1. \quad \checkmark \)

 \[P(n-1) \Rightarrow P(n). \]

 Inductive Step: Suppose \(T\) connected, has \(n-1\) edges.

 - By handshaking theorem, total degree \(= 2(n-1) = 2n - 2\).

 \[\Rightarrow \exists v \in V, \deg(v) = 1. \text{ Remove a vertex of degree } 1 \text{ and its incident edge.} \]

 \[\Rightarrow \text{ add } v \text{ and its edge, we still get a connected graph, and creates no cycles. } \Rightarrow T \text{ is a tree.} \]
Def. A cycle is a tour where the only repeated vertices are the start and end vertices.

Thm. The following statements are all equivalent:

- T is connected and contains no cycle.
- T is connected and has $|V| - 1$ edges.
- T is connected, and removing any edge disconnects T.
- T has no cycle, and adding any single edge creates a cycle.