Invariant Distribution Recap

A distribution π is *invariant* for the transition probability matrix P if it satisfies the following *balance equations*:

$$\pi = \pi P$$

(1)
1. A state i is recurrent if starting from i, no matter what path we take, we can always return to i

2. A state i is transient if starting from i, there exists a path for which there is no way back to i

3. A class of states is a set of states where it is possible to get from any state to any other state
Irreducibility Definition

A Markov chain is irreducible if it can go from every state i to every other state j, possibly in multiple steps.
Irreducibility Example

irreducible
bcz you can go from any state i to any state j

reducible
bcz you cannot go from 1 to 2
for example.

reducible
bcz you cannot go from 2 to 0
for example.
For an irreducible Markov Chain, we have that:

1. The chain has a unique invariant distribution \(\pi = [\pi(1) \ldots \pi(n)] \).
2. For each \(j \in X \),

\[
\lim_{n \to \infty} \frac{\sum_{m=0}^{n-1} \mathbf{1}\{X_m = j\}}{n} = \pi(j)
\]

This holds regardless of what particular \(\pi_0 \) we use.
Consider an irreducible Markov chain on \(\mathcal{X} \) with transition probability matrix \(P \). Define

\[
d(i) := \text{g.c.d}\{n > 0 \mid P^n(i, i) = \Pr[X_n = i \mid X_0 = i] > 0\}, \ i \in \mathcal{X}.
\]

1. Then, \(d(i) \) has the same value for all \(i \in \mathcal{X} \). If that value is 1, the Markov chain is said to be aperiodic. Otherwise, it is said to be periodic with period \(d \).

2. If the Markov chain is aperiodic, then

\[
\Pr[X_n = i] \to \pi(i), \ \forall i \in \mathcal{X}, \ \text{as} \ n \to \infty. \tag{2}
\]

where \(\pi \) is the unique invariant distribution.

For a given state \(i \), the quantity \(d(i) \) is the greatest common divisor of all the integers \(n > 0 \) so that the Markov chain can go from state \(i \) to state \(i \) in \(n \) steps.
Periodicity Example

Path lengths from 1 to 1:
\{1, 2, 3, \ldots\}

\(d(1) = 1\)

Path lengths from 0 to 0:
\{3, 6, 9, \ldots\}

\(d(0) = 3\)

Periodic:

Path lengths from 1 to 0:
\{2, 3, \ldots\}

\(d(1) = 1\)

Path lengths from 0 to 0:
\{3, 6, 9, \ldots\}

Periodically not defined since it is not irreducible.
Key Points

1. If a Markov chain is irreducible, it has a unique stationary distribution but does not necessarily converge to it.

2. Periodicity is not defined for reducible Markov chains.

3. If a Markov chain contains a self-loop, it is aperiodic. If there isn’t a self-loop, it may or may not be aperiodic.

4. If a Markov chain is **irreducible and aperiodic**, then it converges to a unique invariant distribution regardless of the initial distribution π_0.

\[
\pi_0 \quad \xrightarrow{P} \quad \pi_0 \, P \quad \xrightarrow{\pi_0 \, P^2} \quad \pi_0 \, P^3 \rightarrow \pi
\]