Lecture 1C: Induction

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
Announcements!

- Lecture is posted under “Media Gallery” in bCourses
- HW 1 and Vitamin 1 have been released, due Today (grace period Friday)
What is induction?

Goal in induction is to prove some statement for all natural numbers $(\forall n \in \mathbb{N}), P(n)$

Principle of Induction

- **Base Case:** Prove $P(0)$
- **Inductive Hypothesis:** Assume $P(n)$
- **Inductive Step:** Prove $P(n) \Rightarrow P(n+1)$
Visual Analogy

Prove all the dominos fall down

- $P(0) = \text{“First domino falls”}$
- $P(k) \implies P(k+1) \text{ “}k\text{th domino falls implies that }k+1\text{st domino falls”}$

Even if you had infinite dominos lined up, this method would prove all of them will fall down (More on this Week 4).
Simple Induction (Example 1)

Theorem: For all natural numbers n, $0 + 1 + 2 + ... + n = \frac{n(n+1)}{2}$

Proof:
Simple Induction (Example 2)

Theorem: For all $n \in \mathbb{N}$, $3|(n^3 - n)$

Proof:
Simple Induction (Example 3)

Theorem: Any map formed by dividing the plain into regions by drawing straight lines can be properly colored with two colors

Proof:
Improving Induction Hypothesis (Example 1)

Theorem: The sum of the first n odd numbers is a perfect square
Improved:
Proof:
Improving Induction Hypothesis (Example 2)

Theorem: For all \(n \geq 1 \), \(\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 \)

Improved:
Proof:
What is Strong Induction?

Principle of Strong Induction

- **Base Case:** Prove $P(0)$
- **Inductive Hypothesis:** Assume $P(0)$ and $P(1)$ and ... and $P(n)$
- **Inductive Step:** Prove $P(0)$ and ... and $P(n) \Rightarrow P(n+1)$
Strong Induction (Example 1)

Theorem: Every natural number greater than 1 can be written as a product of one or more primes

Proof:
Strong Induction with Multiple Base Cases (Example 2)

Theorem: For every natural number $n \geq 12$, it holds that $n = 4x + 5y$ for some $x, y \in \mathbb{N}$

Proof:
Why ever use weak induction?

Weak Induction \Rightarrow Strong Induction

If you wanted to you could always use strong induction

It is nicer to only use weak induction if strong induction is not needed.
Well-Ordering Principle

The Well-Ordering Principle states that for any non-empty subset of the natural numbers there will be a least element.

Theorem: Every natural number greater than 1 can be written as a product of one or more primes
Proof using WOP:
Summary

- **Simple Induction**
 - $P(0)$ and show $P(n) \Rightarrow P(n+1)$

- **Multiple Base Cases**
 - You may need multiple base cases to prove a statement

- **Improve the Inductive Hypothesis**
 - Sometimes proving a “stronger” statement is easier

- **Strong Induction**
 - $P(0)$ and show $P(0)$ and ... and $P(n) \Rightarrow P(n+1)$

- **Well Ordering Principle**
 - For any subset of the naturals there is a least element