Lecture 2B: Graph Theory II

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
Announcements!

- Read the Weekly Post
- We have caught academic misconduct cases
- HW 2 and Vitamin 2 have been released, due Thu (grace period Fri)
- Throughout this lecture definitions will be underlined
Minimum Edges for Connectivity

Theorem: Any connected graph with n vertices must have at least $n-1$ edges
Complete Graphs

A graph G is **complete** if it contains the maximum number of edges possible.

Correction: K is for mathematician Kazimierz Kuratowski

Examples:
Trees

The following definitions are all equivalent to show that a graph G is a **tree**.

1. G is connected and contains no cycles
2. G is connected and has $n-1$ edges (where $n = |V|$)
3. G is connected, and the removal of any single edge disconnects G
4. G has no cycles, and the addition of any single edge creates a cycle
Tree Definitions are Equivalent

Theorem: For a connected graph \(G \) it contains no cycles iff it has \(n-1 \) edges.

Proof:
Theorem: For a connected graph G it contains no cycles iff it has $n-1$ edges.
Bipartite Graphs

A graph G is **bipartite** if the vertices can be split in two groups (L or R) and edges only go between groups.

G is bipartite iff G is two colorable

Examples:
Planar Graphs

A graph is called \textit{planar} if it can be drawn in the plane without any edges crossing.

Examples:
Euler’s Formula: $v - e + f = 2$

Theorem: If G is a connected planar graph, then $v - e + f = 2$.

Proof:
Euler’s Formula Corollary: $e \leq 3v - 6$

Corollary: For a connected planar graph with $v \geq 3$, we have $e \leq 3v - 6$

Proof:
K_5 is non-planar

Proof:
$K_{3,3}$ is non-planar

Proof:
Kuratowski’s Theorem

Theorem: A graph is non-planar iff it contains K_5 or $K_{3,3}$

Example:
Hypercubes

The vertex set of a n-dimensional hypercube $G=(V, E)$ is given by $V = \{0, 1\}^n$ i.e. the vertices are n-bit strings.
Number of Edges in Hypercubes

Lemma: The total number of edges in an n-dimensional hypercube is $n2^{n-1}$

Proof: