CS 70 Discrete Mathematics and Probability Theory Spring 2025 Rao DIS 0A

Propositional Logic Intro

Note 1 **Proposition**: A statement with a truth value; it is either true or false.

Propositions can be combined to form more complicated expressions, using the following operations:

Operators		Quantifiers			Implication operations	
\wedge	and	\forall	for all	_	Implication	$P \Longrightarrow Q$
\vee	or	Ξ	there exists		Inverse	$\neg P \implies \neg Q$
	not				Converse	$Q \Longrightarrow P$
\implies	implies				Contrapositive	$\neg Q \implies \neg P$
\equiv	equivalent to					

Further, for an implication $P \implies Q$ where P is the hypothesis and Q is the conclusion, it is useful to know that $P \implies Q \equiv \neg P \lor Q$. Additionally, observe that any implication is logically equivalent to its contrapositive.

DeMorgan's Laws: The following identities can be helpful when simplifying expressions and distributing negations.

•
$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

•
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

•
$$\neg(\forall x P(x)) \equiv \exists x(\neg P(x))$$

•
$$\neg(\exists x P(x)) \equiv \forall x(\neg P(x))$$

1 Propositional Practice

Note 1

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

Recall that \mathbb{R} is the set of reals, \mathbb{Q} is the set of rationals, \mathbb{Z} is the set of integers, and \mathbb{N} is the set of natural numbers. The notation " $a \mid b$ ", read as "a divides b", means that a is a divisor of b.

- (a) There is a real number which is not rational.
- (b) All integers are natural numbers or are negative, but not both.
- (c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.

- (d) $\neg (\forall x \in \mathbb{Q}) (x \in \mathbb{Z})$
- (e) $(\forall x \in \mathbb{Z})(((2 \mid x) \lor (3 \mid x)) \implies (6 \mid x))$
- (f) $(\forall x \in \mathbb{N})((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

Solution:

- (a) $(\exists x \in \mathbb{R})$ $(x \notin \mathbb{Q})$, or equivalently $(\exists x \in \mathbb{R}) \neg (x \in \mathbb{Q})$. This is true, and we can use π as an example to prove it.
- (b) $(\forall x \in \mathbb{Z})$ $(((x \in \mathbb{N}) \lor (x < 0)) \land \neg((x \in \mathbb{N}) \land (x < 0)))$. This is true, since we define the naturals to contain all integers which are not negative.
- (c) $(\forall x \in \mathbb{N})$ $((6 | x) \implies ((2 | x) \lor (3 | x)))$. This is true, since any number divisible by 6 can be written as $6k = (2 \cdot 3)k = 2(3k)$, meaning it must also be divisible by 2.
- (d) It is not the case that all rational numbers are integers. This is true, since we have rational numbers like $\frac{1}{2}$ that are not integers.
- (e) Any integer that is divisible by 2 or 3 is also divisible by 6. This is false-2 provides the easiest counterexample. Note that this statement is false even though its converse (part c) is true.
- (f) If a natural number is larger than 7, it can be written as the sum of two other natural numbers. This is trivially true, since we can take a = x and b = 0.

(Aside: this is a reference to the very weak Goldback Conjecture (https://xkcd.com/ 1310/).)

- 2 Truth Tables
- Note 1 Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.
 - (a) $P \wedge (Q \vee P) \equiv P \wedge Q$
 - (b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$
 - (c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

Solution:

(a) Not equivalent.

P	Q	$P \wedge (Q \lor P)$	$P \wedge Q$
Т	Т	Т	Т
T	F	Т	F
F	Т	F	F
F	F	F	F

(b) Equivalent.

P	Q	R	$(P \lor Q) \land R$	$(P \wedge R) \vee (Q \wedge R)$
Τ	Т	Т	Т	Т
T	Т	F	F	F
T	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F

(c) Equivalent.

Lequivalent.				
P	Q	R	$(P \land Q) \lor R$	$(P \lor R) \land (Q \lor R)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	F	F
F	F	Т	Т	Т
F	F	F	F	F

3 Implication

Note 0 Note 1 Which of the following implications are always true, regardless of *P*? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

- (a) $\forall x \forall y P(x, y) \implies \forall y \forall x P(x, y).$
- (b) $\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y).$
- (c) $\exists x \forall y P(x, y) \implies \forall y \exists x P(x, y).$

Solution:

- (a) True. For all can be switched if they are adjacent; since $\forall x, \forall y$ and $\forall y, \forall x$ means for all x and y in our universe.
- (b) False. Let P(x, y) be x < y, and the universe for x and y be the integers. Or let P(x, y) be x = y and the universe be any set with at least two elements. In both cases, the antecedent is true and the consequence is false, thus the entire implication statement is false.
- (c) True. The first statement says that there is an *x*, say *x'* where for every *y*, P(x, y) is true. Thus, one can choose x = x' for the second statement and that statement will be true again for every *y*.