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Induction Intro

Note 3 Natural numbers start at 0, and there is always a next one. For predicates on natural numbers the principle
of induction is: ∀n ∈ N,P(n)≡ P(0)∧∀n,P(n) =⇒ P(n+1).

That is, to prove P(n) for natural numbers one proves P(0), the base case, and ∀n,P(n) =⇒ P(n+ 1),
the induction step. In the induction step, the assumption that P(n) is true is called the induction hypothesis
which is typically used to argue that P(n+1) is true.

An example is the statement P(n) = ∑
n
i=0 i = n(n+1)

2 . The base case, P(0), is the observation that ∑
0
i=0 i = 0.

In the induction step, the induction hypothesis, P(n), is ∑
n
i=0 i = (n)(n+1)

2 . The induction step proceeds as
follows:

n+1

∑
i=0

i =
n

∑
i=0

i+n+1 =
(n)(n+1)

2
+n+1 =

(n+1)(n+2)
2

.

The first equality follows from the definition of the notation, ∑, the second substitutes the induction hypoth-
esis and the last is algebra. And what is proven is P(n+1), which is that ∑

n+1
i=0 i = (n+1)(n+2)

2 .

Another and equivalent view of the natural numbers are that there are the numbers 0 to n and then there is
n+1. The strong induction principle is that

∀n ∈ N,P(n)≡ P(0)∧∀n,((∀k ≤ n)P(k)) =⇒ P(n+1).

Here the induction hypothesis is that P(k) is true for all values k ≤ n. To prove that every natural number
n ≥ 2 can be written as a product of primes, we take the base case as P(2) which can be written as 2, which
is a product of a prime. And for any n, if it is prime, it can be written as itself, otherwise n = ab and by the
inductive hypotheses P(a) and P(b) is that each can be written as a product of primes. Thus, we can write
n as the product of the primes in both a and b. Note here that the base case starts at 2, which illustrates that
one chose the base case as is relevant to the statement being proven.

Strengthening the induction hypothesis is a technique that proves a stronger theorem. For example, the
notes consider the theorem "The sum of the first n odd numbers is a perfect square." In fact, the notes
inductively prove the stronger theorem "The sum of the first n odd numbers is n2." Here, the stronger
inductive hypothesis allows the induction step to proceed easily. Note that in strong induction, we assume
more cases are true in the inductive hypothesis, whereas strengthening the inductive hypothesis proves a
stronger claim entirely.
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1 Fibonacci for Home
Note 3 Recall, the Fibonacci numbers, defined recursively as

F1 = 1, F2 = 1, and Fn = Fn−2 +Fn−1.

Prove that every third Fibonacci number is even. For example, F3 = 2 is even and F6 = 8 is even.

2 Natural Induction on Inequality
Note 3 Prove that if n ∈ N and x > 0, then (1+ x)n ≥ 1+nx.

3 Make It Stronger
Note 3 Suppose that the sequence a1,a2, . . . is defined by a1 = 1 and an+1 = 3a2

n for n ≥ 1. We want to prove that

an ≤ 3(2
n)

for every positive integer n.

(a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be
simply an ≤ 3(2

n)? Attempt an induction proof with this hypothesis to show why this does not work.
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(b) Try to instead prove the statement an ≤ 3(2
n−1) using induction.

(c) Why does the hypothesis in part (b) imply the overall claim?

4 Binary Numbers
Note 3 Prove that every positive integer n can be written in binary. In other words, prove that for any positive

integer n, we can write

n = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 + c0 ·20,

for some k ∈ N and ci ∈ {0,1} for all i ≤ k.
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