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Induction Intro
Note 3 Natural numbers start at 0, and there is always a next one. For predicates on natural numbers the

principle of induction is: ∀n ∈ N,P(n)≡ P(0)∧∀n,P(n) =⇒ P(n+1).

That is, to prove P(n) for natural numbers one proves P(0), the base case, and ∀n,P(n) =⇒
P(n+ 1), the induction step. In the induction step, the assumption that P(n) is true is called the
induction hypothesis which is typically used to argue that P(n+1) is true.

An example is the statement P(n) = ∑
n
i=0 i = n(n+1)

2 . The base case, P(0), is the observation that

∑
0
i=0 i = 0. In the induction step, the induction hypothesis, P(n), is ∑

n
i=0 i = (n)(n+1)

2 . The induction
step proceeds as follows:

n+1

∑
i=0

i =
n

∑
i=0

i+n+1 =
(n)(n+1)

2
+n+1 =

(n+1)(n+2)
2

.

The first equality follows from the definition of the notation, ∑, the second substitutes the induction
hypothesis and the last is algebra. And what is proven is P(n+1), which is that ∑

n+1
i=0 i= (n+1)(n+2)

2 .

Another and equivalent view of the natural numbers are that there are the numbers 0 to n and then
there is n+1. The strong induction principle is that

∀n ∈ N,P(n)≡ P(0)∧∀n,((∀k ≤ n)P(k)) =⇒ P(n+1).

Here the induction hypothesis is that P(k) is true for all values k ≤ n. To prove that every natural
number n ≥ 2 can be written as a product of primes, we take the base case as P(2) which can be
written as 2, which is a product of a prime. And for any n, if it is prime, it can be written as itself,
otherwise n = ab and by the inductive hypotheses P(a) and P(b) is that each can be written as a
product of primes. Thus, we can write n as the product of the primes in both a and b. Note here
that the base case starts at 2, which illustrates that one chose the base case as is relevant to the
statement being proven.

Strengthening the induction hypothesis is a technique proves a stronger theorem. The example, the
notes consider the theorem The sum of the first n odd numbers is a perfect square. In fact, the notes
inductively prove the stronger theorem The sum of the first n odd numbers is n2. Here, the stronger
inductive hypothesis allows the induction step to proceed easily.

1 Natural Induction on Inequality
Note 3 Prove that if n ∈ N and x > 0, then (1+ x)n ≥ 1+nx.
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Solution:

• Base Case: When n = 0, the claim holds since (1+ x)0 ≥ 1+0x.

• Inductive Hypothesis: Assume that (1+ x)k ≥ 1+ kx for some value of n = k where k ∈ N.

• Inductive Step: For n = k+1, we can show the following:

(1+ x)k+1 = (1+ x)k(1+ x)≥ (1+ kx)(1+ x)

≥ 1+ kx+ x+ kx2

≥ 1+(k+1)x+ kx2 ≥ 1+(k+1)x

By induction, we have shown that ∀n ∈ N,(1+ x)n ≥ 1+nx.

2 Make It Stronger
Note 3 Suppose that the sequence a1,a2, . . . is defined by a1 = 1 and an+1 = 3a2

n for n ≥ 1. We want to
prove that

an ≤ 3(2
n)

for every positive integer n.

(a) Suppose that we want to prove this statement using induction. Can we let our inductive
hypothesis be simply an ≤ 3(2

n)? Attempt an induction proof with this hypothesis to show
why this does not work.

(b) Try to instead prove the statement an ≤ 3(2
n−1) using induction.

(c) Why does the hypothesis in part (b) imply the overall claim?

Solution:

(a) Let’s try to prove that for every n ≥ 1, we have an ≤ 32n
by induction.

Base Case: For n = 1 we have a1 = 1 ≤ 321
= 9.

Inductive Step: For some n ≥ 1, we assume an ≤ 32n
. Now, consider n+1. We can write:

an+1 = 3a2
n ≤ 3(32n

)2 = 3×32×2n
= 3×32n+1

= 32n+1+1.

However, what we wanted was to get an inequality of the form: an+1 ≤ 32n+1
. There is an

extra +1 in the exponent of what we derived.

(b) This time the induction works.

Base Case: For n = 1 we have a1 = 1 ≤ 32−1 = 3.
Inductive Step: For some n ≥ 1 we assume an ≤ 32n−1. Now, consider n+1. We can write:

an+1 = 3a2
n ≤ 3× (32n−1)2 = 3×32×(2n−1) = 3×32n+1−2 = 32n+1−1.

This is exactly the induction hypothesis for n+1.
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(c) For every n≥ 1, we have 2n−1≤ 2n and therefore 32n−1 ≤ 32n
. This means that our modified

hypothesis which we proved in part (b) does indeed imply what we wanted to prove in part
(a).

3 Binary Numbers
Note 3 Prove that every positive integer n can be written in binary. In other words, prove that for any

positive integer n, we can write

n = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 + c0 ·20,

for some k ∈ N and ci ∈ {0,1} for all i ≤ k.

Solution:

Prove by strong induction on n.

The key insight here is that if n is divisible by 2, then it is easy to get a bit string representation
of (n+ 1) from that of n. However, if n is not divisible by 2, then (n+ 1) will be, and its binary
representation will be more easily derived from that of (n+1)/2. More formally:

• Base Case: n = 1 can be written as 1×20.

• Inductive Step: Assume that the statement is true for all 1 ≤ m ≤ n, where n is arbitrary.
Now, we need to consider n+ 1. If n+ 1 is divisible by 2, then we can apply our inductive
hypothesis to (n+1)/2 and use its representation to express n+1 in the desired form.

(n+1)/2 = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 + c0 ·20

n+1 = 2 · (n+1)/2 = ck ·2k+1 + ck−1 ·2k + · · ·+ c1 ·22 + c0 ·21 +0 ·20.

Otherwise, n must be divisible by 2 and thus have c0 = 0. We can obtain the representation
of n+1 from n as follows:

n = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 +0 ·20

n+1 = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 +1 ·20

Therefore, the statement is true.

Here is another alternate solution emulating the algorithm of converting a decimal number to a
binary number.

• Base Case: n = 1 can be written as 1×20.

• Inductive Step: Assume that the statement is true for all 1 ≤ m ≤ n, for arbitrary n. We show
that the statement holds for n+1. Let 2m be the largest power of 2 such that n+1≥ 2m. Thus,
n+1< 2m+1. We examine the number (n+1)−2m. Since (n+1)−2m < n+1, the inductive
hypothesis holds, so we have a binary representation for (n+1)−2m. (If (n+1)−2m = 0,
then we still have a binary representation, namely 0 ·20.)
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Also, since n+1 < 2m+1, (n+1)−2m < 2m, so the largest power of 2 in the representation
of (n+1)−2m is 2m−1. Thus, by the inductive hypothesis,

(n+1)−2m = cm−1 ·2m−1 + cm−2 ·2m−2 + · · ·+ c1 ·21 + c0 ·20,

and adding 2m to both sides gives

n+1 = 2m + cm−1 ·2m−1 + cm−2 ·2m−2 + · · ·+ c1 ·21 + c0 ·20,

which is a binary representation for n+1. Thus, the induction is complete.

Another intuition is that if x has a binary representation, 2x and 2x+1 do as well: shift the bits and
possibly place 1 in the last bit. The above induction could then have proceeded from n and used
the binary representation of ⌊n/2⌋, shifting and possibly setting the first bit depending on whether
n is odd or even.

Note: In proofs using simple induction, we only use P(n) in order to prove P(n+ 1). Simple
induction gets stuck here because in order to prove P(n+ 1) in the inductive step, we need to
assume more than just P(n). This is because it is not immediately clear how to get a representation
for P(n+ 1) using just P(n), particularly in the case that n+ 1 is divisible by 2. As a result, we
assume the statement to be true for all of 1,2, . . . ,n in order to prove it for P(n+1).

4 Fibonacci for Home
Note 3 Recall, the Fibonacci numbers, defined recursively as

F1 = 1, F2 = 1, and Fn = Fn−2 +Fn−1.

Prove that every third Fibonacci number is even. For example, F3 = 2 is even and F6 = 8 is even.

Solution:

We want to prove that for all natural numbers k ≥ 1, F3k is even.

Base case: For k = 1, we can see that F3 = 2 is even.

Induction hypothesis: Suppose that for an arbitrary fixed value of k, F3k is even.

Inductive step: We can write

F3k+3 = F3k+2 +F3k+1 = 2F3k+1 +F3k.

By the induction hypothesis, we know that F3k = 2q for some q.

This means that we have that F3k+3 = 2(F3k+1 + q), which implies that it is even. Thus, by the
principles of induction we have shown that all F3k are even.
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