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1 Natural Induction on Inequality

Note 3 Prove that if n ∈ N and x > 0, then (1+ x)n ≥ 1+nx.

Solution:

• Base Case: When n = 0, the claim holds since (1+ x)0 ≥ 1+0x.

• Inductive Hypothesis: Assume that (1+ x)k ≥ 1+ kx for some value of n = k where k ∈ N.

• Inductive Step: For n = k+1, we can show the following:

(1+ x)k+1 = (1+ x)k(1+ x)≥ (1+ kx)(1+ x)

≥ 1+ kx+ x+ kx2

≥ 1+(k+1)x+ kx2 ≥ 1+(k+1)x

By induction, we have shown that ∀n ∈ N,(1+ x)n ≥ 1+nx.

2 Make It Stronger

Note 3 Suppose that the sequence a1,a2, . . . is defined by a1 = 1 and an+1 = 3a2
n for n ≥ 1. We want to

prove that
an ≤ 3(2

n)

for every positive integer n.

(a) Suppose that we want to prove this statement using induction. Can we let our inductive hy-
pothesis be simply an ≤ 3(2

n)? Attempt an induction proof with this hypothesis to show why
this does not work.

(b) Try to instead prove the statement an ≤ 3(2
n−1) using induction.

(c) Why does the hypothesis in part (b) imply the overall claim?

Solution:
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(a) Let’s try to prove that for every n ≥ 1, we have an ≤ 32n
by induction.

Base Case: For n = 1 we have a1 = 1 ≤ 321
= 9.

Inductive Step: For some n ≥ 1, we assume an ≤ 32n
. Now, consider n+1. We can write:

an+1 = 3a2
n ≤ 3(32n

)2 = 3×32×2n
= 3×32n+1

= 32n+1+1.

However, what we wanted was to get an inequality of the form: an+1 ≤ 32n+1
. There is an extra

+1 in the exponent of what we derived.

(b) This time the induction works.

Base Case: For n = 1 we have a1 = 1 ≤ 32−1 = 3.
Inductive Step: For some n ≥ 1 we assume an ≤ 32n−1. Now, consider n+1. We can write:

an+1 = 3a2
n ≤ 3× (32n−1)2 = 3×32×(2n−1) = 3×32n+1−2 = 32n+1−1.

This is exactly the induction hypothesis for n+1.

(c) For every n ≥ 1, we have 2n −1 ≤ 2n and therefore 32n−1 ≤ 32n
. This means that our modified

hypothesis which we proved in part (b) does indeed imply what we wanted to prove in part (a).

3 Binary Numbers

Note 3 Prove that every positive integer n can be written in binary. In other words, prove that for any
positive integer n, we can write

n = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 + c0 ·20,

for some k ∈ N and ci ∈ {0,1} for all i ≤ k.

Solution:

Prove by strong induction on n.

The key insight here is that if n is divisible by 2, then it is easy to get a bit string representation
of (n+ 1) from that of n. However, if n is not divisible by 2, then (n+ 1) will be, and its binary
representation will be more easily derived from that of (n+1)/2. More formally:

• Base Case: n = 1 can be written as 1×20.

• Inductive Step: Assume that the statement is true for all 1 ≤ m ≤ n, where n is arbitrary.
Now, we need to consider n+ 1. If n+ 1 is divisible by 2, then we can apply our inductive
hypothesis to (n+1)/2 and use its representation to express n+1 in the desired form.

(n+1)/2 = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 + c0 ·20

n+1 = 2 · (n+1)/2 = ck ·2k+1 + ck−1 ·2k + · · ·+ c1 ·22 + c0 ·21 +0 ·20.
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Otherwise, n must be divisible by 2 and thus have c0 = 0. We can obtain the representation
of n+1 from n as follows:

n = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 +0 ·20

n+1 = ck ·2k + ck−1 ·2k−1 + · · ·+ c1 ·21 +1 ·20

Therefore, the statement is true.

Here is another alternate solution emulating the algorithm of converting a decimal number to a
binary number.

• Base Case: n = 1 can be written as 1×20.

• Inductive Step: Assume that the statement is true for all 1 ≤ m ≤ n, for arbitrary n. We show
that the statement holds for n+1. Let 2m be the largest power of 2 such that n+1≥ 2m. Thus,
n+1< 2m+1. We examine the number (n+1)−2m. Since (n+1)−2m < n+1, the inductive
hypothesis holds, so we have a binary representation for (n+1)−2m. (If (n+1)−2m = 0,
then we still have a binary representation, namely 0 ·20.)

Also, since n+1 < 2m+1, (n+1)−2m < 2m, so the largest power of 2 in the representation
of (n+1)−2m is 2m−1. Thus, by the inductive hypothesis,

(n+1)−2m = cm−1 ·2m−1 + cm−2 ·2m−2 + · · ·+ c1 ·21 + c0 ·20,

and adding 2m to both sides gives

n+1 = 2m + cm−1 ·2m−1 + cm−2 ·2m−2 + · · ·+ c1 ·21 + c0 ·20,

which is a binary representation for n+1. Thus, the induction is complete.

Another intuition is that if x has a binary representation, 2x and 2x+1 do as well: shift the bits and
possibly place 1 in the last bit. The above induction could then have proceeded from n and used
the binary representation of ⌊n/2⌋, shifting and possibly setting the first bit depending on whether
n is odd or even.

Note: In proofs using simple induction, we only use P(n) in order to prove P(n+ 1). Simple
induction gets stuck here because in order to prove P(n+ 1) in the inductive step, we need to
assume more than just P(n). This is because it is not immediately clear how to get a representation
for P(n+ 1) using just P(n), particularly in the case that n+ 1 is divisible by 2. As a result, we
assume the statement to be true for all of 1,2, . . . ,n in order to prove it for P(n+1).

4 Fibonacci for Home

Note 3 Recall, the Fibonacci numbers, defined recursively as

F1 = 1, F2 = 1, and Fn = Fn−2 +Fn−1.

Prove that every third Fibonacci number is even. For example, F3 = 2 is even and F6 = 8 is even.
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Solution:

We want to prove that for all natural numbers k ≥ 1, F3k is even.

Base case: For k = 1, we can see that F3 = 2 is even.

Induction hypothesis: Suppose that for an arbitrary fixed value of k, F3k is even.

Inductive step: We can write

F3k+3 = F3k+2 +F3k+1 = 2F3k+1 +F3k.

By the induction hypothesis, we know that F3k = 2q for some q.

This means that we have that F3k+3 = 2(F3k+1 + q), which implies that it is even. Thus, by the
principles of induction we have shown that all F3k are even.
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