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Modular Arithmetic Intro II
Note 6 Euclidean Algorithm: An algorithm to find gcd(x,y) efficiently, using the following two identi-

ties:

• gcd(x,y) = gcd(y,x)

• gcd(x,y) = gcd(y,x mod y)

Extended Euclidean Algorithm: An extension to the Euclidean algorithm allowing us to find
coefficients a and b such that ax+by = gcd(x,y), given inputs x and y (this is known as Bezout’s
identity). In particular, the forward pass of the algorithm is the standard Euclidean algorithm, and
the backward pass of the algorithm allows us to find the coefficients. Note that if gcd(x,y) = 1,
then the equation ax+by = gcd(x,y) = 1 tells us that (a,x) are inverses in (mod y) and (b,y) are
inverses in (mod x).

Chinese Remainder Theorem: Given a system of k modular equations x ≡ ai (mod ni), for vari-
ous constants ai and coprime moduli ni, there exists a unique solution x defined as follows:

x ≡
k

∑
i=1

aibi (mod N)

bi =

(
N
ni

)((
N
ni

)−1

mod ni

)

N =
k

∏
i=1

ni

1 Extended Euclid: Two Ways
Note 6 In this problem, we will explore the Extended Euclid’s Algorithm: first, the traditional implemen-

tation, and second, a faster, iterative version. Both ways yield the same result.

Parts (b) and (c) explore the traditional Extended Euclid’s Algorithm. The bolded numbers below
keep track of which numbers appeared as inputs to the gcd call. Remember that we are interested
in writing the GCD as a linear combination of the original inputs, so we don’t want to accidentally
simplify the expressions and eliminate the inputs.

(a) As motivation, suppose we’ve found values of a and b such that 54a+ 17b = 1. With this
knowledge, what is 17−1 (mod 54)?
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(b) Note that x mod y, by definition, is always x minus a multiple of y. So, in the execution of
Euclid’s algorithm, each newly introduced value can always be expressed as a "combination"
of the previous two, like so:

gcd(54,17) = gcd(17,3) 3 = 1×54−3×17

= gcd(3,2) 2 = 1×17− ×3

= gcd(2,1) 1 = 1×3− ×2

= gcd(1,0) [0 = 1×2− ×1]
= 1.

(Fill in the blanks)

(c) Recall that our goal is to fill out the blanks in

1 = ×54+ ×17.

To do so, we work back up from the bottom, and express the gcd above as a combination of
the two arguments on each of the previous lines:

1 = ×3+ ×2

=

= ×17+ ×3

=

= ×54+ ×17

What does this imply, in this case, about the multiplicative inverse of 17, in arithmetic mod
54?

(d) In the previous parts, we used a recursive method to write gcd(54,17) as a linear combination
of 54 and 17. We can also compute the same result iteratively—this is an alternative to
the above method that is oftentimes faster. We begin by writing equations for our initial
arguments, 54 and 17, as a linear combination of themselves:

54 = 1×54+0×17 (E1)

17 = 0×54+1×17 (E2)

We can then use these initial equations (labeled E1 and E2 for ease of reference) to iteratively
write reduced values as linear combinations of 54 and 17, until we are able to write an
equation for gcd(54,17), as desired.

In particular, we want to subtract as many multiples of the second equation as possible from
the first to create a new equation with a lower LHS value. We can keep iterating until the

CS 70, Summer 2025, DIS 1D 2



LHS becomes gcd(54,17) = 1.

= ×54+ ×17 (E3 = E1 − ×E2)

= ×54+ ×17 (E4 = E2 − ×E3)

1 = ×54+ ×17 (E5 = E3 − ×E4)

What does this imply, in this case, about the multiplicative inverse of 17, in arithmetic mod
54? Verify that your answer is equivalent to the previous part.

(e) Calculate the gcd of 17 and 39, and determine how to express this as a “combination” of 17
and 39. What does this imply, in this case, about the multiplicative inverse of 17, in arithmetic
mod 39?

Solution:

(a) If we take the equation 54a+17b= 1 (mod 54), the first term goes to zero (as it is a multiple
of 54). This means that we’re left with 17b≡ 1 (mod 54), giving us that 17−1 ≡ b (mod 54).

In other words, the coefficients we get from the extended Euclidean algorithm give us the
multiplicative inverse directly. This is one of the main reasons why the extended Euclidean
algorithm is useful.

(b) Filling in the blanks,

3 = 1×54−3×17
2 = 1×17−5×3
1 = 1×3−1×2
[0 = 1×2−2×1]

It may be easier to think about this in a rearranged form: 54 = 3×17+3, etc.; this directly
corresponds to the 54 mod 17 = 3 operation in the forward pass, and the desired blank comes
from ⌊54/17⌋.

(c) Working our way backward up the equalities and substituting them in, we have

1 = 1×3−1×2
= 1×3−1× (1×17−5×3)
=−1×17+6×3
=−1×17+6× (1×54−3×17)
= 6×54−19×17

We get that the multiplicative inverse of 17 mod 54 is −19, or 35. Note that −19 ≡ 35 mod
54.
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(d) We have the following operations on the equations:

54 = 1×54+0×17 (E1)

17 = 0×54+1×17 (E2)

3 = 1×54−3×17 (E3 = E1 −3E2)

2 =−5×54+16×17 (E4 = E2 −5E3)

1 = 6×54−19×17 (E5 = E3 −E4)

Notice that the LHS also corresponds to the simplifications in the forward pass of the Eu-
clidean algorithm; we’re doing the same calculations (i.e. to determine how much to sub-
tract), and we’re also doing the backward pass at the same time. This is why the iterative
method can be more intuitive and quicker than the recursive method in the previous parts.

Again, we get that the multiplicative inverse of 17 mod 54 is −19, or 35.

(e) With the recursive algorithm, we have

gcd(39,17) = gcd(17,5) 5 = 1×39−2×17
= gcd(5,2) 2 = 1×17−3×5
= gcd(2,1) 1 = 1×5−2×2
= gcd(1,0) [0 = 1×2−2×1]

Going back up, we have

1 = 1×5−2×2
= 1×5−2× (1×17−3×5)
=−2×17+7×5
=−2×17+7× (1×39−2×17)
= 7×39−16×17

This leaves us with a final answer of 1 = 7×39−16×17, making the inverse 17−1 ≡−16 ≡
23 (mod 39).

With the iterative algorithm, we have

39 = 1×39+0×17 (E1)

17 = 0×39+1×17 (E2)

5 = 1×39−2×17 (E3 = E1 −2E2)

2 =−3×39+7×17 (E4 = E2 −3E3)

1 = 7×39−16×17 (E5 = E3 −2E4)
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2 Chinese Remainder Theorem Practice
Note 6 In this question, you will solve for a natural number x such that,

x ≡ 1 (mod 3)
x ≡ 3 (mod 7) (1)
x ≡ 4 (mod 11)

(a) Suppose you find 3 natural numbers a,b,c that satisfy the following properties:

a ≡ 1 (mod 3) ; a ≡ 0 (mod 7) ; a ≡ 0 (mod 11), (2)
b ≡ 0 (mod 3) ; b ≡ 1 (mod 7) ; b ≡ 0 (mod 11), (3)
c ≡ 0 (mod 3) ; c ≡ 0 (mod 7) ; c ≡ 1 (mod 11). (4)

Show how you can use the knowledge of a, b and c to compute an x that satisfies (1).

In the following parts, you will compute natural numbers a,b and c that satisfy the above 3
conditions and use them to find an x that satisfies (1).

(b) Find a natural number a that satisfies (2). That is, a ≡ 1 (mod 3) and is a multiple of 7 and
11.

It may help to start with a number that is a multiple of both 7 and 11; what number should
we multiply this by in order to make it equivalent to 1 (mod 3)?

(c) Find a natural number b that satisfies (3). That is, b ≡ 1 (mod 7) and is a multiple of 3 and
11.

(d) Find a natural number c that satisfies (4). That is, c ≡ 1 (mod 11) and is a multiple of 3 and
7.

(e) Putting together your answers for parts (a), (b), (c) and (d), report an x that satisfies (1).

(f) How many values of x mod 3 ·7 ·11 = 231 satisfy (1)?

Solution:

(a) Observe that a+3b+4c ≡ 1+0+0 (mod 3), a+3b+4c ≡ 0+3+0 (mod 7) and a+3b+
4c ≡ 0+0+4 (mod 11). Therefore x = a+3b+4c indeed satisfies the conditions in (1).

(b) This question asks to find a number 0 ≤ a < 3×7×11 that is divisible by 7 and 11 and has
a remainder of 1 when divided by 3.

Starting with a number divisible by 7 and 11, we can start with 7 · 11 = 77. Notice that
we can multiply by the multiplicative inverse mod 3 to make it equivalent to 1 (mod 3). In
particular, since 77 ·77−1 ≡ 1 (mod 3), we just need to compute

77−1 ≡ 2−1 ≡ 2 (mod 3).

This gives us a = 77 ·2 = 154.
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We can check to make sure that what we’ve computed actually satisfies (2):

154 = 3 ·51+1 ≡ 1 (mod 3)
154 = 22 ·7 ≡ 0 (mod 7)
154 = 14 ·11 ≡ 0 (mod 11)

Taking a step back, notice that what we’ve computed is

a = (7 ·11) ·
(
(7 ·11)−1 mod 3

)
.

Here, the first term ensures that we have a multiple of 7 and 11, and the last term ensures that
we have a quantity equivalent to 1 (mod 3).

(c) Using a similar approach here, we can start with a multiple of 3 and 11; namely, 3 ·11 = 33.

Here, we can multiply by its multiplicative inverse mod 7 to make it equivalent to 1 (mod 7).
In particular, we just need to compute

33−1 ≡ 5−1 ≡ 3 (mod 7).

This gives us b = 33 ·3 = 99.

Again, notice that we’ve essentially just computed

b = (3 ·11) ·
(
(3 ·11)−1 mod 7

)
.

(d) Similarly, we can start with a multiple of 3 and 7; namely, 3 ·7 = 21.

Here, we can multiply by its multiplicative inverse mod 11 to make it equivalent to 1 (mod 11).
In particular, we just need to compute

21−1 ≡ 10−1 ≡ 10 (mod 11).

This gives us c = 21 ·10 = 210.

Again, notice that we’ve essentially just computed

c = (3 ·7) ·
(
(3 ·7)−1 mod 11

)
.

(e) From Parts (b), (c) and (d) we’ve found a = 154, b = 99, and c = 210 which satisfies (2), (3)
and (4) respectively. Together with Part (a) of the question, this implies that

x = a+3b+4c = 154+3 ·99+4 ·210 = 154+297+840 = 1291

satisfies the required criterion in (1).

To verify this, observe that

1291 = 430×3+1 ≡ 1 (mod 3)
1291 = 184×7+3 ≡ 3 (mod 7)
1291 = 117×11+4 ≡ 4 (mod 11)
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(f) x ≡ 1291 ≡ 136 (mod 231). CRT gives us a unique solution mod 3 ·7 ·11 = 231, so we have
exactly one x that satisfies (1).

As a side note, what we’re essentially doing here is computing values that satisfy exactly one of
the equivalences, while not affecting any of the other equivalences. In particular, suppose we have
a system of k modular equations x ≡ ai (mod mi) for i = 1 through k. For each equation, we want
a value bi ≡ 1 (mod mi) and bi ≡ 0 (mod m j) for j ̸= i, such that aibi satisfies exactly the mod mi
equivalence but is equivalent to zero for everything else. This way, adding up all of the aibi’s will
give us a quantity that satisfies all of the equivalences.

Computing each bi can be written as the following formula:

bi =
M
mi

·

((
M
mi

)−1

mod mi

)
,

where M = m1 ·m2 · · ·mk. The first term ensures that bi ≡ 0 (mod m j) for j ̸= i, and the second
term ensures that bi ≡ 1 (mod mi). The solution can then be computed by

x ≡
k

∑
i=1

aibi (mod M).

3 Baby Fermat
Note 6 Assume that a does have a multiplicative inverse mod m. Let us prove that its multiplicative inverse

can be written as ak (mod m) for some k ≥ 0.

(a) Consider the infinite sequence a,a2,a3, . . . (mod m). Prove that this sequence has repeti-
tions.

(Hint: Consider the Pigeonhole Principle.)

(b) Assuming that ai ≡ a j (mod m), where i > j, what is the value of ai− j (mod m)?

(c) Prove that the multiplicative inverse can be written as ak (mod m). What is k in terms of i
and j?

Solution:

(a) There are only m possible values mod m, and so after the m-th term we should see repetitions.

The Pigeonhole principle applies here - we have m boxes that represent the different unique
values that ak can take on (mod m). Then, we can view a,a2,a3, · · · as the objects to put in
the m boxes. As soon as we have more than m objects (in other words, we reach am+1 in our
sequence), the Pigeonhole Principle implies that there will be a collision, or that at least two
numbers in our sequence take on the same value (mod m).
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(b) We will temporarily use the notation a∗ for the multiplicative inverse of a to avoid confusion.
If we multiply both sides by (a∗) j in the third line below, we get

ai ≡ a j (mod m),

ai− j a · · ·a︸ ︷︷ ︸
j times

≡ a · · ·a︸ ︷︷ ︸
j times

(mod m),

ai− j a · · ·a︸ ︷︷ ︸
j times

·a∗ · · ·a∗︸ ︷︷ ︸
j times

≡ a · · ·a︸ ︷︷ ︸
j times

·a∗ · · ·a∗︸ ︷︷ ︸
j times

(mod m),

ai− j ≡ 1 (mod m).

(c) We can rewrite ai− j ≡ 1 (mod m) as ai− j−1a ≡ 1 (mod m). Therefore ai− j−1 is the multi-
plicative inverse of a (mod m).
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