1 Always, Sometimes, or Never

In each part below, you are given some information about a graph G. Using only the information in the current part, say whether G will always be planar, always be non-planar, or could be either. If you think it is always planar or always non-planar, prove it. If you think it could be either, give a planar example and a non-planar example.

(a) G can be vertex-colored with 4 colors.
(b) G requires 7 colors to be vertex-colored.
(c) $e \leq 3v - 6$, where e is the number of edges of G and v is the number of vertices of G.
(d) G is connected, and each vertex in G has degree at most 2.
(e) Each vertex in G has degree at most 2.

Solution:

(a) Either planar or non-planar. By the 4-color theorem, any planar graph can provide the planar example. The easiest non-planar example is $K_{3,3}$, which can be 2-colored because it is bipartite. (Certainly, any graph which can be colored using only 2 colors can also be colored using 4 colors.)

(b) Always non-planar. The 4-color theorem tells us that if a graph is planar, it can be colored using only 4 colors. The contrapositive of this is that if a graph requires more than 4 colors to vertex-color, it must be non-planar. (Using the 5- or 6-color theorem would also work.)

(c) Either planar or non-planar. From the notes, we know that every planar graph follows this formula, so any planar graph is a valid planar example. The easiest non-planar example is again $K_{3,3}$, which has $e = 9$ and $v = 6$, meaning our formula becomes $9 \leq 3(6) - 6 = 12$, which is certainly true.

(d) Always planar. There are two cases to deal with here: either G is a tree, or G is not a tree and so contains at least one cycle. In the former case, we’re immediately done, since all trees are planar. In the latter case, consider any cycle in G. We know that every vertex in that cycle is adjacent to the vertex to its left in the cycle and to the vertex to its right in the cycle. But we also know that no vertex can be connected to more than two other vertices, so the cycle isn’t connected to anything else. But G is a connected graph, so we must have that G is just a single
large cycle. And we can certainly draw a simple cycle on a plane without crossing any edges, so even in this case G is still planar.

Alternatively, we can use Kuratowski’s theorem; since each vertex has a degree of at most 2, it is impossible for G to contain K_5 or $K_{3,3}$. This means that G must be planar.

(e) Always planar. Each of G’s connected components is connected and has no vertex of degree more than 2, so by the previous part, each of them must be planar. Thus, each of G’s connected components must be planar, so G itself must be planar.

Alternatively, we can follow the same procedure as the previous alternate solution; each vertex still has a degree of at most 2, so it is impossible for G to contain K_5 or $K_{3,3}$. This means that G must be planar.

2 Planarity

(a) Prove that $K_{3,3}$ is nonplanar.

(b) Consider graphs with the property T: For every three distinct vertices v_1, v_2, v_3 of graph G, there are at least two edges among them. Use a proof by contradiction to show that if G is a graph on ≥ 7 vertices, and G has property T, then G is nonplanar.

Solution:

(a) Assume toward contradiction that $K_{3,3}$ were planar. In $K_{3,3}$, there are $v = 6$ vertices and $e = 9$ edges. If $K_{3,3}$ were planar, from Euler’s formula we would have $v - e + f = 2 \Rightarrow f = 5$. On the other hand, each region is bounded by at least four edges, so $4f \leq 2e$, i.e., $20 \leq 18$, which is a contradiction. Thus, $K_{3,3}$ is not planar.

(b) In this problem, we use proof by contradiction. Assume G is planar. Select any five vertices out of the seven. Consider the subgraph formed by these five vertices. They cannot form K_5, since G is planar. So some pair of vertices amongst these five has no edge between them. Label these vertices v_1 and v_2. The remaining five vertices of G besides v_1 and v_2 cannot form K_5 either, so there is a second pair of vertices amongst these new five that has no edge between them. Label these v_3 and v_4. Label the remaining three vertices v_5, v_6 and v_7. Since v_1v_2 is not an edge, by property T (which states any three vertices must have at least two edges between them) it must be that $\{v_1, v\}$ and $\{v_2, v\}$ are edges, where $v \in \{v_3, v_4, v_5, v_6, v_7\}$. Similarly for v_3, v_4 we have that $\{v_3, v\}$ and $\{v_4, v\}$ are edges, where $v \in \{v_1, v_2, v_5, v_6, v_7\}$. Now consider the subgraph induced by $\{v_1, v_2, v_3, v_5, v_6, v_7\}$. With the three vertices $\{v_1, v_2, v_3\}$ on one side and $\{v_5, v_6, v_7\}$ on the other, we observe that $K_{3,3}$ is a subgraph of this induced graph. This contradicts the fact that G is planar.

The above shows that any graph with 7 vertices and property T is non-planar. Any graph with greater than 7 vertices and property T will also be non-planar because it will contain a subgraph with 7 vertices and property T.

CS 70, Summer 2023, DIS 2A 2
3 Hypercubes

The vertex set of the \(n \)-dimensional hypercube \(G = (V,E) \) is given by \(V = \{0,1\}^n \) (recall that \(\{0,1\}^n \) denotes the set of all \(n \)-bit strings). There is an edge between two vertices \(x \) and \(y \) if and only if \(x \) and \(y \) differ in exactly one bit position.

(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using the corresponding bit strings.

(b) Show that the edges of an \(n \)-dimensional hypercube can be colored using \(n \) colors so that no pair of edges sharing a common vertex have the same color.

(c) Show that for any \(n \geq 1 \), the \(n \)-dimensional hypercube is bipartite.

Solution:

(a) The three hypercubes are a line, a square, and a cube, respectively. See also note 5 for pictures.

(b) Consider each edge that changes the \(i \)th bit for some \(i \leq n \). Every vertex touches exactly one of these edges, because there is exactly one way to change the \(i \)th bit in any bitstring. Coloring each of these edges color \(i \) ensures that each vertex will then be adjacent to \(n \) differently colored edges, since there are \(n \) different bits to change, and no two edges representing bit changes on different bits have the same color.

An example for the three dimensional case is shown below (red is the first bit, blue is the second bit, and green is the third bit):

![3D Hypercube Example](image)

Alternate solution (using induction):

In the base case of \(n = 1 \), the hypercube of only one line can be edge colored with 1 color. Next, suppose that the \(n \) dimensional hypercube can be colored with \(n \) colors. Recall that the \(n + 1 \) dimensional hypercube is composed of two \(n \) dimensional hypercubes; each of these hypercubes can be colored with \(n \) colors by the inductive hypothesis.

We can connect the two \(n \) dimensional hypercubes with edges colored with a different color; this will be our \((n+1) \)th color. Since these new edges will always be between distinct pairs of vertices, one from each subcube, none of these new edges will share a vertex, giving a valid coloring of the \(n + 1 \) dimensional hypercube with \(n + 1 \) colors.
(c) Consider the vertices with an even number of 0 bits and the vertices with an odd number of 0 bits. Each vertex with an even number of 0 bits is adjacent only to vertices with an odd number of 0 bits, since each edge represents a single bit change (either a 0 bit is added by flipping a 1 bit, or a 0 bit is removed by flipping a 0 bit). Let \(L \) be the set of the vertices with an even number of 0 bits and let \(R \) be the vertices with an odd number of 0 bits, then no two adjacent vertices will belong to the same set.

An example for the three dimensional case is shown below (\(L \) are blue vertices, and \(R \) are red vertices):

![Diagram](image)

Alternate solution (using induction and coloring):

It may be simpler to that a graph being 2-colorable is the same as being bipartite. Now, the argument is easier to state. First the base case is a hypercube with two vertices which is clearly two-colorable. Then notice, switching the colors in a two-coloring is still valid as if endpoints are differently colored, switching leaves them differently colored. Now, recursively one two colors the two subcubes the same, and then switches the colors in one subcube. The internal to subcube edges are fine by induction. The edges across are fine as the corresponding vertices are differently colored due to the switching.