1 Eulerian Tour and Eulerian Walk

(a) Is there an Eulerian tour in the graph above? If no, give justification. If yes, provide an example.

(b) Is there an Eulerian walk in the graph above? An Eulerian walk is a walk that uses each edge exactly once. If no, give justification. If yes, provide an example.

(c) What is the condition that there is an Eulerian walk in an undirected graph? Briefly justify your answer.
2 Coloring Trees

(a) Prove that all trees with at least 2 vertices have at least two leaves. Recall that a leaf is defined as a node in a tree with degree exactly 1.

(b) Prove that all trees with at least 2 vertices are bipartite: the vertices can be partitioned into two groups so that every edge goes between the two groups.

[Hint: Use induction on the number of vertices.]
3 Degree Sequences

The degree sequence of a graph is the sequence of the degrees of the vertices, arranged in descending order, with repetitions as needed. For example, the degree sequence of the following graph is \((3, 2, 2, 2, 1)\).

For each of the parts below, determine if there exists a simple undirected graph \(G\) (i.e. a graph without self-loops and multiple-edges) having the given degree sequence. Justify your claim.

(a) \((3, 3, 2, 2)\)
(b) \((3, 2, 2, 2, 2, 1, 1)\)
(c) \((6, 2, 2, 2)\)
(d) \((4, 4, 3, 2, 1)\)