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Modular Arithmetic Intro I
Note 6 Modular arithmetic: working number “mod m”: restrict to only {0,1, . . . ,m−1}; other numbers

are equivalent to some number in this set.

Think of a clock; “13-o’clock” is the same as “1-o’clock”; 2m is the same as m, which is the same
as 0. We can go the other way too; 0 is the same as −m, etc.

Saying a ≡ b (mod m) means:

• a, b have same remainder when divided by m

• a = b+ km for some integer k

• m | (a−b)

Operations: Suppose a ≡ b (mod m) and c ≡ d (mod m).

Addition/subtraction: a± c ≡ b±d (mod m)

Multiplication: ac ≡ bd (mod m)

Exponentiation: ak ≡ bk (mod m). You cannot apply the mod to the exponent.

There is no division; there are multiplicative inverses though: x−1 ≡ a (mod m) means ax ≡ 1
(mod m).

1 Party Tricks
Note 6 You are at a party celebrating your completion of the CS 70 midterm. Show off your modular

arithmetic skills and impress your friends by quickly figuring out the last digit(s) of each of the
following numbers:

(a) Find the last digit of 113142.

(b) Find the last digit of 99999.

(c) Find the last digit of 3641.

Solution:

(a) First, we notice that 11 ≡ 1 (mod 10). So 113142 ≡ 13142 ≡ 1 (mod 10), so the last digit is
a 1.
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(b) 9 is its own multiplicative inverse mod 10, so 92 ≡ 1 (mod 10). Then

99999 = 92(4999) ·9 ≡ 14999 ·9 ≡ 9 (mod 10),

so the last digit is a 9.

Another solution: We know 9 ≡−1 (mod 10), so

99999 ≡ (−1)9999 ≡−1 ≡ 9 (mod 10).

You could have also used this to say

99999 ≡ (−1)9998 ·9 ≡ 9 (mod 10).

(c) Notice that 34 = 92 so using that 92 = 81 ≡ 1 (mod 10), we have 34 ≡ 1 (mod 10). We also
have that 641 = 160 ·4+1, so

3641 ≡ 34(160) ·3 ≡ 1160 ·3 ≡ 3 (mod 10),

making the last digit a 3.

2 Modular Potpourri
Note 6 Prove or disprove the following statements:

(a) There exists some x ∈ Z such that x ≡ 3 (mod 16) and x ≡ 4 (mod 6).

(b) 2x ≡ 4 (mod 12) ⇐⇒ x ≡ 2 (mod 12).

(c) 2x ≡ 4 (mod 12) ⇐⇒ x ≡ 2 (mod 6).

Solution:

(a) Impossible.

Suppose there exists an x satisfying both equations.

From x ≡ 3 (mod 16), we have x = 3+16k for some integer k. This implies x ≡ 1 (mod 2).

From x ≡ 4 (mod 6), we have x = 4+6l for some integer l. This implies x ≡ 0 (mod 2).

Now we have x ≡ 1 (mod 2) and x ≡ 0 (mod 2). Contradiction.

(b) False, consider x ≡ 8 (mod 12).

The reason we can’t eliminate the 2 in the first equation to get the second equation is because
2 does not have a multiplicative inverse modulo 12, as 2 and 12 are not coprime.

(c) True. We can write 2x ≡ 4 (mod 12) as 2x = 4+ 12k for some k ∈ Z. Dividing by 2, we
have x = 2+6k for the same k ∈ Z. This is equivalent to saying x ≡ 2 (mod 6).
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3 Modular Inverses
Note 6 Recall the definition of inverses from lecture: let a,m ∈ Z and m > 0; if x ∈ Z satisfies ax ≡ 1

(mod m), then we say x is an inverse of a modulo m.

Now, we will investigate the existence and uniqueness of inverses.

(a) Is 3 an inverse of 5 modulo 14?

(b) Is 3 an inverse of 5 modulo 10?

(c) For all n ∈ N, is 3+14n an inverse of 5 modulo 14?

(d) Does 4 have an inverse modulo 8?

(e) Suppose x,x′ ∈ Z are both inverses of a modulo m. Is it possible that x ̸≡ x′ (mod m)?

Solution:

(a) Yes, because 3 ·5 = 15 ≡ 1 (mod 14).

(b) No, because 3 ·5 = 15 ≡ 5 (mod 10).

(c) Yes, because (3+14n) ·5 = 15+14 ·5n ≡ 15 ≡ 1 (mod 14).

(d) No. For contradiction, assume x ∈ Z is an inverse of 4 modulo 8. Then 4x ≡ 1 (mod 8).
Then 8 | 4x− 1, which is impossible, since 4x− 1 is odd (and thus cannot be divisible by 8
either).

(e) No. We have xa ≡ x′a ≡ 1 (mod m). So

xa− x′a = a(x− x′)≡ 0 (mod m).

Multiply both sides by x, we get

xa(x− x′)≡ 0 · x (mod m)

=⇒ x− x′ ≡ 0 (mod m).

=⇒ x ≡ x′ (mod m)

4 Fibonacci GCD
Note 6 The Fibonacci sequence is given by Fn = Fn−1+Fn−2, where F0 = 0 and F1 = 1. Prove that, for all

n ≥ 1, gcd(Fn,Fn−1) = 1.

Solution:

Proceed by induction.

Base Case: We have gcd(F1,F0) = gcd(1,0) = 1, which is true.

Inductive Hypothesis: Assume we have gcd(Fk,Fk−1) = 1 for some k ≥ 1.
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Inductive Step: Now we need to show that gcd(Fk+1,Fk) = 1 as well.

We can show that:

gcd(Fk+1,Fk) = gcd(Fk +Fk−1,Fk) = gcd(Fk,Fk−1) = 1.

Note that the second expression comes from the definition of Fibonacci numbers. The last expres-
sion comes from Euclid’s GCD algorithm, in which gcd(x,y) = gcd(y,x mod y), since

Fk +Fk−1 ≡ Fk−1 (mod Fk).

Therefore the statement is also true for n = k+1.

By the rule of induction, we can conclude that gcd(Fn,Fn−1) = 1 for all n ≥ 1, where F0 = 0 and
F1 = 1 and Fn = Fn−1 +Fn−2.
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