1 Short Answers

(a) A connected planar simple graph has 5 more edges than it has vertices. How many faces does it have?
(b) How many edges need to be removed from a 3-dimensional hypercube to get a tree?

2 Always, Sometimes, or Never

In each part below, you are given some information about a graph \(G \). Using only the information in the current part, say whether \(G \) will always be planar, always be non-planar, or could be either. If you think it is always planar or always non-planar, prove it. If you think it could be either, give a planar example and a non-planar example.

(a) \(G \) can be vertex-colored with 4 colors.
(b) \(G \) requires 7 colors to be vertex-colored.
(c) \(e \leq 3v - 6 \), where \(e \) is the number of edges of \(G \) and \(v \) is the number of vertices of \(G \).
(d) \(G \) is connected, and each vertex in \(G \) has degree at most 2.
(e) Each vertex in \(G \) has degree at most 2.
3 Hypercubes

The vertex set of the \(n \)-dimensional hypercube \(G = (V, E) \) is given by \(V = \{0, 1\}^n \) (recall that \(\{0, 1\}^n \) denotes the set of all \(n \)-bit strings). There is an edge between two vertices \(x \) and \(y \) if and only if \(x \) and \(y \) differ in exactly one bit position. These problems will help you understand hypercubes.

(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using the corresponding bit strings.

(b) Show that the edges of an \(n \)-dimensional hypercube can be colored using \(n \) colors so that no pair of edges sharing a common vertex have the same color.

(c) Show that for any \(n \geq 1 \), the \(n \)-dimensional hypercube is bipartite.

4 Triangular Faces

Suppose we have a connected planar graph \(G \) with \(v \) vertices and \(e \) edges such that \(e = 3v - 6 \). Prove that in any planar drawing of \(G \), every face must be a triangle; that is, prove that every face must be incident to exactly three edges of \(G \).