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Modular Arithmetic Intro II

Note 6 Euclidean Algorithm: An algorithm to find gcd(x,y) efficiently, using the following two identities:

• gcd(x,y) = gcd(y,x)

• gcd(x,y) = gcd(y,x mod y)

Extended Euclidean Algorithm: An extension to the Euclidean algorithm allowing us to find coefficients a
and b such that ax+by= gcd(x,y), given inputs x and y (this is known as Bezout’s identity). In particular, the
forward pass of the algorithm is the standard Euclidean algorithm, and the backward pass of the algorithm
allows us to find the coefficients. Note that if gcd(x,y) = 1, then the equation ax+by = gcd(x,y) = 1 tells
us that (a,x) are inverses in (mod y) and (b,y) are inverses in (mod x).

Chinese Remainder Theorem: Given a system of k modular equations x ≡ ai (mod ni), for various con-
stants ai and coprime moduli ni, there exists a unique solution x defined as follows:

x ≡
k

∑
i=1

aibi (mod N)

bi =

(
N
ni

)((
N
ni

)−1

mod ni

)

N =
k

∏
i=1

ni

1 Extended Euclid: Two Ways
Note 6 In this problem, we will explore the Extended Euclid’s Algorithm: first, the traditional implementation, and

second, a faster, iterative version. Both ways yield the same result.

Parts (b) and (c) explore the traditional Extended Euclid’s Algorithm. The bolded numbers below keep track
of which numbers appeared as inputs to the gcd call. Remember that we are interested in writing the GCD
as a linear combination of the original inputs, so we don’t want to accidentally simplify the expressions and
eliminate the inputs.

(a) As motivation, suppose we’ve found values of a and b such that 54a+17b = 1. With this knowledge,
what is 17−1 (mod 54)?

(b) Note that x mod y, by definition, is always x minus a multiple of y. So, in the execution of Euclid’s
algorithm, each newly introduced value can always be expressed as a "combination" of the previous
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two, like so:

gcd(54,17) = gcd(17,3) 3 = 1×54−3×17

= gcd(3,2) 2 = 1×17− ×3

= gcd(2,1) 1 = 1×3− ×2

= gcd(1,0) [0 = 1×2− ×1]
= 1.

(Fill in the blanks)

(c) Recall that our goal is to fill out the blanks in

1 = ×54+ ×17.

To do so, we work back up from the bottom, and express the gcd above as a combination of the two
arguments on each of the previous lines:

1 = ×3+ ×2

=

= ×17+ ×3

=

= ×54+ ×17

What does this imply, in this case, about the multiplicative inverse of 17, in arithmetic mod 54?

(d) In the previous parts, we used a recursive method to write gcd(54,17) as a linear combination of 54
and 17. We can also compute the same result iteratively—this is an alternative to the above method
that is oftentimes faster. We begin by writing equations for our initial arguments, 54 and 17, as a linear
combination of themselves:

54 = 1×54+0×17 (E1)

17 = 0×54+1×17 (E2)

We can then use these initial equations (labeled E1 and E2 for ease of reference) to iteratively write
reduced values as linear combinations of 54 and 17, until we are able to write an equation for
gcd(54,17), as desired.

In particular, we want to subtract as many multiples of the second equation as possible from the first
to create a new equation with a lower LHS value. We can keep iterating until the LHS becomes
gcd(54,17) = 1.

= ×54+ ×17 (E3 = E1 − ×E2)

= ×54+ ×17 (E4 = E2 − ×E3)

1 = ×54+ ×17 (E5 = E3 − ×E4)

What does this imply, in this case, about the multiplicative inverse of 17, in arithmetic mod 54? Verify
that your answer is equivalent to the previous part.
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(e) Calculate the gcd of 17 and 39, and determine how to express this as a “combination” of 17 and 39.
What does this imply, in this case, about the multiplicative inverse of 17, in arithmetic mod 39?

2 Chinese Remainder Theorem Practice
Note 6 In this question, you will solve for a natural number x such that,

x ≡ 1 (mod 3)
x ≡ 3 (mod 7) (1)
x ≡ 4 (mod 11)

(a) Suppose you find 3 natural numbers a,b,c that satisfy the following properties:

a ≡ 1 (mod 3) ; a ≡ 0 (mod 7) ; a ≡ 0 (mod 11), (2)
b ≡ 0 (mod 3) ; b ≡ 1 (mod 7) ; b ≡ 0 (mod 11), (3)
c ≡ 0 (mod 3) ; c ≡ 0 (mod 7) ; c ≡ 1 (mod 11). (4)

Show how you can use the knowledge of a, b and c to compute an x that satisfies (1).

In the following parts, you will compute natural numbers a,b and c that satisfy the above 3 conditions
and use them to find an x that satisfies (1).

(b) Find a natural number a that satisfies (2). That is, a ≡ 1 (mod 3) and is a multiple of 7 and 11.

It may help to start with a number that is a multiple of both 7 and 11; what number should we multiply
this by in order to make it equivalent to 1 (mod 3)?
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(c) Find a natural number b that satisfies (3). That is, b ≡ 1 (mod 7) and is a multiple of 3 and 11.

(d) Find a natural number c that satisfies (4). That is, c ≡ 1 (mod 11) and is a multiple of 3 and 7.

(e) Putting together your answers for parts (a), (b), (c) and (d), report an x that satisfies (1).

3 Baby Fermat
Note 6 Assume that a does have a multiplicative inverse mod m. Let us prove that its multiplicative inverse can be

written as ak (mod m) for some k ≥ 0.

(a) Consider the infinite sequence a,a2,a3, . . . (mod m). Prove that this sequence has repetitions.

(Hint: Consider the Pigeonhole Principle.)

(b) Assuming that ai ≡ a j (mod m), where i > j, what is the value of ai− j (mod m)?

(c) Prove that the multiplicative inverse can be written as ak (mod m). What is k in terms of i and j?
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