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1 RSA Warm-Up

Note 7 Consider an RSA scheme with modulus N = pq, where p and q are distinct prime numbers larger
than 3.

(a) What is wrong with using the exponent e = 2 in an RSA public key?

(b) Recall that e must be relatively prime to p−1 and q−1. Find a condition on p and q such that
e = 3 is a valid exponent.

(c) Now suppose that p = 5, q = 17, and e = 3. What is the public key?

(d) What is the private key?

(e) Alice wants to send a message x = 10 to Bob. What is the encrypted message E(x) she sends
using the public key?

(f) Suppose Bob receives the message y = 19 from Alice. What equation would he use to decrypt
the message? What is the decrypted message?

Solution:

(a) To find the private key d from the public key (N,e), we need gcd(e,(p − 1)(q − 1)) = 1.
However, (p− 1)(q− 1) is necessarily even since p,q are distinct odd primes, so if e = 2,
gcd(e,(p−1)(q−1)) = 2, and a private key does not exist. (Note that this shows that e should
more generally never be even.)

(b) Both p and q must be of the form 3k+2. p = 3k+1 is a problem since then p−1 has a factor
of 3 in it. p = 3k is a problem because then p is not prime.

(c) N = p · q = 85 and e = 3 are displayed publicly. Note that in practice, p and q should be
much larger (512-bit) numbers. We are only choosing small numbers here to allow manual
computation.

(d) We must have ed = 3d ≡ 1 (mod 64), so d = 43. Reminder: we would do this by using
extended gcd with x = 64 and y = 3. We get gcd(x,y) = 1 = ax+by, and a = 1, b =−21.

(e) We have E(x) = x3 (mod 85), where E(x) is the encryption function. 103 ≡ 65 (mod 85), so
E(x) = 65.
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(f) We have D(y) = y43 (mod 85), where D(y) is the decryption function, the inverse of E(x).

x ≡ 1943 (mod 85)

From CRT we know that for coprime numbers p and q if

x ≡ a (mod p)

x ≡ b (mod q)

then

x = aqq1 +bpp1 (mod pq)

where p1 = p−1 (mod q) and q1 = q−1 (mod p).

In our case we have p = 5 and q = 17. So

x ≡ 1943 ≡ (−1)43 ≡−1 ≡ 4 (mod 5)

and

x ≡ 1943 (mod 17)

x ≡ (2)43 (mod 17)

x ≡ (24)10 ·23 (mod 17)

x ≡ (−1)10 ·8 (mod 17)
x ≡ 8 (mod 17)

Hence

x = a = 4 (mod 5) x = b = 8 (mod 17)

and

p1 = p−1 (mod 17) = 5−1 (mod 17) = 7

q1 = q−1 (mod 5) = 17−1 (mod 5) = 3

So we have

x ≡ aqq1 +bpp1 (mod pq)

x ≡ 4 ·17 ·3+8 ·5 ·7 (mod 85)
x ≡ 4 ·17 ·3+280 (mod 85)
x ≡ 17 · (12)+280 (mod 85)
x ≡ 17 · (10+2)+280 (mod 85)
x ≡ 34+25 (mod 85)
x ≡ 59 (mod 85)

so D(y) = 59.

CS 70, Spring 2024, DIS 4A 2



2 RSA with Multiple Keys

Note 7 Members of a secret society know a secret word. They transmit this secret word x between each
other many times, each time encrypting it with the RSA method. Eve, who is listening to all
of their communications, notices that in all of the public keys they use, the exponent e is the
same. Therefore the public keys used look like (N1,e), . . . ,(Nk,e) where no two Ni’s are the same.
Assume that the message is x such that 0 ≤ x < Ni for every i.

Further, in all of the subparts, you may assume that Eve knows the details of the modified RSA
schemes (i.e. Eve knows the format of the Ni’s, but not the specific values used to compute the
Ni’s).

(a) Suppose Eve sees the public keys (p1q1,7) and (p1q2,7) as well as the corresponding trans-
missions. Can Eve use this knowledge to break the encryption? If so, how? Assume that Eve
cannot compute prime factors efficiently. Think of p1,q1,q2 as massive 1024-bit numbers.
Assume p1,q1,q2 are all distinct and are valid primes for RSA to be carried out.

(b) The secret society has wised up to Eve and changed their choices of N, in addition to changing
their word x. Now, Eve sees keys (p1q1,3), (p2q2,3), and (p3q3,3) along with their trans-
missions. Argue why Eve cannot break the encryption in the same way as above. Assume
p1, p2, p3,q1,q2,q3 are all distinct and are valid primes for RSA to be carried out.

(c) Let’s say the secret x was not changed (e = 3), so they used the same public keys as before, but
did not transmit different messages. How can Eve figure out x?

Solution:

(a) Normally, the difficulty of cracking RSA hinges upon the believed difficulty of factoring large
numbers. If Eve were given just p1q1, she would (probably) not be able to figure out the
factors.

However, Eve has access to two public keys, so yes, she will be able to figure it out. Note that
gcd(p1q1, p1q2) = p1. Taking GCDs is actually an efficient operation thanks to the Euclidean
Algorithm. Therefore, she can figure out the value of p1, and from there figure out the value
of q1 and q2 since she has p1q1 and p1q2.

(b) Since none of the N’s have common factors, she cannot find a GCD to divide out of any of the
Ns. Hence the approach above does not work.

(c) Eve observes x3 (mod N1), x3 (mod N2), x3 (mod N3). Since all N1,N2,N3 are pairwise rel-
atively prime, Eve can use the Chinese Remainder Theorem to figure out x3 (mod N1N2N3).
However, once she gets that, she knows x, since x < N1, x < N2, and x < N3, which implies
x3 < N1N2N3, so she can directly take the cube root of the result from CRT. Uh oh!
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3 RSA for Concert Tickets

Note 7 Alice wants to tell Bob her concert ticket number, m, which is an integer between 0 and 100
inclusive. She wants to tell Bob over an insecure channel that Eve can listen in on, but Alice does
not want Eve to know her ticket number.

(a) Bob announces his public key (N = pq,e), where N is large (512 bits). Alice encrypts her mes-
sage using RSA. Eve sees the encrypted message, and figures out what Alice’s ticket number
is. How did she do it?

(b) Alice decides to be a bit more elaborate. She picks a random number r that is 256 bits long,
so that it is too hard to guess. She encrypts that and sends it to Bob, and also computes rm,
encrypts that, and sends it to Bob. Eve is aware of what Alice did, but does not know the value
of r. How can she figure out m? (You may assume that r is coprime to N.)

Solution:

(a) There are only 101 possible values for Alice’s ticket number, so Eve can try encrypting all 101
values with Bob’s public key and find out which one matches the one Alice sent.

(b) Alice sends x = re (mod pq), as well as y = (rm)e = reme = xme (mod pq). We can find x−1

(mod N) using the Extended Euclidean Algorithm, and multiplying this value by y gives us me

(mod N). Now we proceed as in the previous part to find m.

Another approach is to compute xme for all 101 values of m, and compare the value to y,
checking which one matches.
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