1 Polynomial Practice

(a) If f and g are non-zero real polynomials, how many roots do the following polynomials have at least? How many can they have at most? (Your answer may depend on the degrees of f and g.)

(i) $f + g$
(ii) $f \cdot g$
(iii) f/g, assuming that f/g is a polynomial

(b) Now let f and g be polynomials over GF(p).

(i) We say a polynomial $f = 0$ if $\forall x, f(x) = 0$. If $f \cdot g = 0$, is it true that either $f = 0$ or $g = 0$?

(ii) How many f of degree exactly $d < p$ are there such that $f(0) = a$ for some fixed $a \in \{0, 1, \ldots, p-1\}$?

(c) Find a polynomial f over GF(5) that satisfies $f(0) = 1, f(2) = 2, f(4) = 0$. How many such polynomials are there?

Solution:

(a) (i) It could be that $f + g$ has no roots at all (example: $f(x) = 2x^2 - 1$ and $g(x) = -x^2 + 2$), so the minimum number is 0. However, if the highest degree of $f + g$ is odd, then it has to cross the x-axis at least once, meaning that the minimum number of roots for odd degree polynomials is 1. On the other hand, $f + g$ is a polynomial of degree at most $m = \max(\deg f, \deg g)$, so it can have at most m roots. The one exception to this expression is if $f = -g$. In that case, $f + g = 0$, so the polynomial has an infinite number of roots!

(ii) A product is zero if and only if one of its factors vanishes. So if $f(x) \cdot g(x) = 0$ for some x, then either x is a root of f or it is a root of g, which gives a maximum of $\deg f + \deg g$ possibilities. Again, there may not be any roots if neither f nor g have any roots (example: $f(x) = g(x) = x^2 + 1$).

(iii) If f/g is a polynomial, then it must be of degree $d = \deg f - \deg g$ and so there are at most d roots. Once more, it may not have any roots, e.g. if $f(x) = g(x)(x^2 + 1)$, $f/g = x^2 + 1$ has no root.
(b) (i) No.

Example 1: \(x^p - 1\) and \(x\) are both non-zero polynomials on \(GF(p)\) for any \(p\). \(x\) has a root at 0, and by Little Fermat, \(x^p - 1\) has a root at all non-zero points in \(GF(p)\). So, their product \(x^p - x\) must have a zero on all points in \(GF(p)\).

Example 2: To satisfy \(f \cdot g = 0\), all we need is \((\forall x \in S, f(x) = 0 \lor g(x) = 0)\) where \(S = \{0, \ldots, p - 1\}\). We may see that this is not equivalent to \((\forall x \in S, f(x) = 0) \lor (\forall x \in S, g(x) = 0)\).

To construct a concrete example, let \(p = 2\) and we enforce \(f(0) = 1, f(1) = 0\) (e.g. \(f(x) = 1 - x\)), and \(g(0) = 0, g(1) = 1\) (e.g. \(g(x) = x\)). Then \(f \cdot g = 0\) but neither \(f\) nor \(g\) is the zero polynomial.

(ii) We know that in general each of the \(d + 1\) coefficients of \(f(x) = \sum_{k=0}^{d} c_k x^k\) can take any of \(p\) values. However, the conditions \(f(0)\) and \(\deg f = d\) impose constraints on the constant coefficient \(f(0) = c_0 = a\) and the top coefficient \(x_d \neq 0\). Hence we are left with \((p - 1) \cdot p^{d-1}\) possibilities.

(c) We know by part (b) that any polynomial over \(GF(5)\) can be of degree at most 4. A polynomial of degree \(\leq 4\) is determined by 5 points \((x_i, y_i)\). We have assigned three, which leaves \(5^2 = 25\) possibilities. To find a specific polynomial, we use Lagrange interpolation:

\[
\Delta_0(x) = 2(x - 2)(x - 4) \quad \Delta_2(x) = x(x - 4) \quad \Delta_4(x) = 2x(x - 2),
\]

and so \(f(x) = \Delta_0(x) + 2\Delta_2(x) = 4x^2 + 1\).

2 Lagrange Interpolation in Finite Fields

Find a unique polynomial \(p(x)\) of degree at most 3 that passes through points \((-1, 3), (0, 1), (1, 2),\) and \((2, 0)\) in modulo 5 arithmetic using the Lagrange interpolation.

(a) Find \(p_{-1}(x)\) where \(p_{-1}(0) \equiv p_{-1}(1) \equiv p_{-1}(2) \equiv 0\) (mod 5) and \(p_{-1}(-1) \equiv 1\) (mod 5).

(b) Find \(p_0(x)\) where \(p_{0}(-1) \equiv p_{0}(1) \equiv p_{0}(2) \equiv 0\) (mod 5) and \(p_{0}(0) \equiv 1\) (mod 5).

(c) Find \(p_1(x)\) where \(p_{1}(-1) \equiv p_{1}(0) \equiv p_{1}(2) \equiv 0\) (mod 5) and \(p_{1}(1) \equiv 1\) (mod 5).

(d) Find \(p_2(x)\) where \(p_{2}(-1) \equiv p_{2}(0) \equiv p_{2}(1) \equiv 0\) (mod 5) and \(p_{2}(2) \equiv 1\) (mod 5).

(e) Construct \(p(x)\) using a linear combination of \(p_{-1}(x), p_{0}(x), p_{1}(x)\) and \(p_{2}(x)\).

Solution:

(a)

\[
p_{-1}(x) \equiv x(x - 1)(x - 2)((-1)(-1 - 1)(-1 - 2))^{-1} \equiv x(x - 1)(x - 2)(-6)^{-1} \equiv 4x(x - 1)(x - 2) \equiv x(x - 1)(x - 2)(-6)^{-1} \equiv 4x(x - 1)(x - 2) \pmod{5}
\]
(b)
\[
p_0(x) \equiv (x+1)(x-1)(x-2)((1)(-1)(-2))^{-1} \equiv 3(x+1)(x-1)(x-2) \\
\equiv (x+1)(x-1)(x-2)(2)^{-1} \equiv 3(x+1)(x-1)(x-2) \pmod{5}
\]

(c)
\[
p_1(x) \equiv (x+1)(x)(x-2)((2)(1)(-1))^{-1} \\
\equiv 2(x+1)(x-2) \equiv (x+1)(x-2)(-2)^{-1} \equiv 2(x+1)(x-2) \pmod{5}
\]

(d)
\[
p_2(x) \equiv (x+1)(x-1)(6)^{-1} \equiv (x+1)(x-2) \pmod{5}.
\]

(e) We don’t need \(p_2(x)\).
\[
p(x) \equiv 3 \cdot p_{-1}(x) + 1 \cdot p_0(x) + 2 \cdot p_1(x) + 0 \cdot p_2(x) \equiv 4x^3 + 4x^2 + 3x + 1 \pmod{5}.
\]

3 Secrets in the United Nations

A vault in the United Nations can be opened with a secret combination \(s \in \mathbb{Z}\). In only two situations should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries, plus the U.N. Secretary-General, must agree.

(a) Propose a scheme that gives private information to the Secretary-General and all 193 member countries so that the secret combination \(s\) can only be recovered under either one of the two specified conditions.

(b) The General Assembly of the UN decides to add an extra level of security: each of the 193 member countries has a delegation of 12 representatives, all of whom must agree in order for that country to help open the vault. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary-General and to each representative of each country.

Solution:

(a) Create a polynomial of degree 192 and give each country one point. Give the Secretary General 193 – 55 = 138 points, so that if she collaborates with 55 countries, they will have a total of 193 points and can reconstruct the polynomial. Without the Secretary-General, the polynomial can still be recovered if all 193 countries come together. (We do all our work in \(GF(p)\) where \(p \geq d + 1\).

Alternatively, we could have one scheme for condition (i) and another for (ii). The first condition is the secret-sharing setup we discussed in the notes, so a single polynomial of degree 192 suffices, with each country receiving one point, and evaluation at zero returning the combination \(s\). For the second condition, create a polynomial \(f\) of degree 1 with \(f(0) = s\), and give \(f(1)\) to the Secretary-General. Now create a second polynomial \(g\) of degree 54, with \(g(0) = f(2)\), and give one point of \(g\) to each country. This way any 55 countries can recover \(g(0) = f(2)\), and then can consult with the Secretary-General to recover \(s = f(0)\) from \(f(1)\) and \(f(2)\).
(b) We’ll layer an additional round of secret-sharing onto the scheme from part (a). If t_i is the key given to the ith country, produce a degree-11 polynomial f_i so that $f_i(0) = t_i$, and give one point of f_i to each of the 12 delegates. Do the same for each country (using different f_i each time, of course).

4 To The Moon!

A secret number s is required to launch a rocket, and Alice distributed the values $(1, p(1)), (2, p(2)), \ldots, (n + 1, p(n + 1))$ of a degree n polynomial p to a group of SGME holders Bob$_1$, \ldots, Bob$_{n+1}$. As usual, she chose p such that $p(0) = s$. Bob$_1$ through Bob$_{n+1}$ now gather to jointly discover the secret. However, Bob$_1$ is secretly a partner at Melvin Capital and already knows s, and wants to sabotage Bob$_2$, \ldots, Bob$_{n+1}$, making them believe that the secret is in fact some fixed $s' \neq s$. How could he achieve this? In other words, what value should he report (in terms variables known in the problem, such as s', s or y_1) in order to make the others believe that the secret is s'?

Solution:

We know that in order to discover s, the Bobs would compute

$$s = y_1 \Delta_1(0) + \sum_{k=2}^{n+1} y_k \Delta_k(0), \quad (1)$$

where $y_i = p(i)$. Bob$_1$ now wants to change his value y_1 to some y'_1, so that

$$s' = y'_1 \Delta_1(0) + \sum_{k=2}^{n+1} y_k \Delta_k(0). \quad (2)$$

Subtracting Equation 1 from 2 and solving for y'_1, we see that

$$y'_1 = (\Delta_1(0))^{-1} (s' - s) + y_1,$$

where $(\Delta_1(0))^{-1}$ exists, because $\deg \Delta_1(x) = n$ with its n roots at $2, \ldots, n + 1$ (so $\Delta_1(0) \neq 0$).