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1 Polynomial Practice

Note 8 (a) If f and g are non-zero real polynomials, how many real roots do the following polynomials
have at least? How many can they have at most? (Your answer may depend on the degrees of
f and g.)

(i) f +g

(ii) f ·g
(iii) f/g, assuming that f/g is a polynomial

(b) Now let f and g be polynomials over GF(p).

(i) We say a polynomial f = 0 if ∀x, f (x) = 0. Show that if f · g = 0, it is not always true
that either f = 0 or g = 0.

(ii) How many f of degree exactly d < p are there such that f (0) = a for some fixed a ∈
{0,1, . . . , p−1}?

(c) Find a polynomial f over GF(5) that satisfies f (0) = 1, f (2) = 2, f (4) = 0. How many such
polynomials of degree at most 4 are there?

Solution:

(a) (i) It could be that f +g has no roots at all (example: f (x) = 2x2 −1 and g(x) = −x2 +2),
so the minimum number is 0. However, if the highest degree of f + g is odd, then it
has to cross the x-axis at least once, meaning that the minimum number of roots for
odd degree polynomials is 1. On the other hand, f + g is a polynomial of degree at
most m = max(deg f ,degg), so it can have at most m roots. The one exception to this
expression is if f =−g. In that case, f +g = 0, so the polynomial has an infinite number
of roots!

(ii) A product is zero if and only if one of its factors vanishes. So if f (x) ·g(x) = 0 for some
x, then either x is a root of f or it is a root of g, which gives a maximum of deg f +degg
possibilities. Again, there may not be any roots if neither f nor g have any roots (example:
f (x) = g(x) = x2 +1).

(iii) If f/g is a polynomial, then it must be of degree d = deg f −degg and so there are at most
d roots. Once more, it may not have any roots, e.g. if f (x) = g(x)(x2 +1), f/g = x2 +1
has no root.
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(b) (i) There are a couple counterexamples:
Example 1: xp−1 − 1 and x are both non-zero polynomials on GF(p) for any p. x has
a root at 0, and by FLT, xp−1 − 1 has a root at all non-zero points in GF(p). So, their
product xp − x must have a zero on all points in GF(p).
Example 2: To satisfy f · g = 0, all we need is (∀x ∈ S, f (x) = 0∨ g(x) = 0) where
S = {0, . . . , p−1}. We may see that this is not equivalent to (∀x ∈ S, f (x) = 0))∨ (∀x ∈
S,g(x) = 0).
To construct a concrete example, let p= 2 and we enforce f (0)= 1, f (1)= 0 (e.g. f (x)=
1− x), and g(0) = 0,g(1) = 1 (e.g. g(x) = x). Then f · g = 0 but neither f nor g is the
zero polynomial.

(ii) We know that in general each of the d + 1 coefficients of f (x) = ∑
d
k=0 ckxk can take

any of p values. However, the conditions f (0) and deg f = d impose constraints on the
constant coefficient f (0) = c0 = a and the top coefficient xd ̸= 0. Hence we are left with
(p−1) · pd−1 possibilities.

(c) A polynomial of degree ≤ 4 is determined by 5 points (xi,yi). We have assigned three, which
leaves 52 = 25 possibilities. To find a specific polynomial, we use Lagrange interpolation:

∆0(x) = 2(x−2)(x−4) ∆2(x) = x(x−4) ∆4(x) = 2x(x−2),

and so f (x) = ∆0(x)+2∆2(x) = 4x2 +1.

2 Lagrange Interpolation in Finite Fields

Note 8 Find a unique polynomial p(x) of degree at most 2 that passes through points (−1,3), (0,1), and
(1,2) in modulo 5 arithmetic using the Lagrange interpolation.

(a) Find p−1(x) where p−1(0)≡ p−1(1)≡ 0 (mod 5) and p−1(−1)≡ 1 (mod 5).

(b) Find p0(x) where p0(−1)≡ p0(1)≡ 0 (mod 5) and p0(0)≡ 1 (mod 5).

(c) Find p1(x) where p1(−1)≡ p1(0)≡ 0 (mod 5) and p1(1)≡ 1 (mod 5).

(d) Construct p(x) using a linear combination of p−1(x), p0(x), and p1(x).

Solution:

(a) We see

p−1(x)≡ (x−0)(x−1)
(
(−1−0)(−1−1)

)−1

≡ (2)−1x(x−1) (mod 5)
≡ 3x(x−1) (mod 5).
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(b) We see

p0(x)≡ (x+1)(x−1)
(
(0+1)(0−1)

)−1

≡ (−1)−1(x−1)(x+1) (mod 5)
≡ 4(x−1)(x+1) (mod 5).

(c) We see

p1(x)≡ (x+1)(x−0)
(
(1+1)(1−0)

)−1

≡ (2)−1x(x+1) (mod 5)
≡ 3x(x+1) (mod 5).

(d) Putting everything together,

p(x) = 3p−1(x)+1p0(x)+2p1(x)

= 9x(x−1)+4(x−1)(x+1)+6x(x+1)

≡ 4x2 −3x−4 (mod 5)

≡ 4x2 +2x+1 (mod 5).

3 Secrets in the United Nations

Note 8 A vault in the United Nations can be opened with a secret combination s∈Z. In only two situations
should this vault be opened: (i) all 193 member countries must agree, or (ii) at least 55 countries,
plus the U.N. Secretary-General, must agree.

(a) Propose a scheme that gives private information to the Secretary-General and all 193 member
countries so that the secret combination s can only be recovered under either one of the two
specified conditions.

(b) The General Assembly of the UN decides to add an extra level of security: each of the 193
member countries has a delegation of 12 representatives, all of whom must agree in order for
that country to help open the vault. Propose a scheme that adds this new feature. The scheme
should give private information to the Secretary-General and to each representative of each
country.

Solution:

(a) Create a polynomial of degree 192 and give each country one point. Give the Secretary General
193− 55 = 138 distinct points, so that if she collaborates with 55 countries, they will have a
total of 193 points and can reconstruct the polynomial. Without the Secretary-General, the
polynomial can still be recovered if all 193 countries come together. (We do all our work in
GF(p) where p ≥ d +1).
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Alternatively, we could have one scheme for condition (i) and another for (ii). The first condi-
tion is the secret-sharing setup we discussed in the notes, so a single polynomial of degree 192
suffices, with each country receiving one point, and evaluation at zero returning the combina-
tion s. For the second condition, create a polynomial f of degree 1 with f (0) = s, and give f (1)
to the Secretary-General. Now create a second polynomial g of degree 54, with g(0) = f (2),
and give one point of g to each country. This way any 55 countries can recover g(0) = f (2),
and then can consult with the Secretary-General to recover s = f (0) from f (1) and f (2).

(b) We’ll layer an additional round of secret-sharing onto the scheme from part (a). If ti is the
key given to the ith country, produce a degree-11 polynomial fi so that fi(0) = ti, and give one
point of fi to each of the 12 delegates. Do the same for each country (using different fi each
time, of course).

4 To The Moon!

Note 8 A secret number s is required to launch a rocket, and Alice distributed the values
(1, p(1)) ,(2, p(2)) , . . . ,(n+1, p(n+1)) of a degree n polynomial p to a group of $GME holders
Bob1, . . . ,Bobn+1. As usual, she chose p such that p(0) = s. Bob1 through Bobn+1 now gather
to jointly discover the secret. However, Bob1 is secretly a partner at Melvin Capital and already
knows s, and wants to sabotage Bob2, . . . ,Bobn+1, making them believe that the secret is in fact
some fixed s′ ̸= s. How could he achieve this? In other words, what value should he report (in
terms variables known in the problem, such as s′,s or y1) in order to make the others believe that
the secret is s′?

Solution:

We know that in order to discover s, the Bobs would compute

s = y1∆1(0)+
n+1

∑
k=2

yk∆k(0), (1)

where yi = p(i). Bob1 now wants to change his value y1 to some y′1, so that

s′ = y′1∆1(0)+
n+1

∑
k=2

yk∆k(0). (2)

Subtracting Equation 1 from 2 and solving for y′1, we see that

y′1 = (∆1(0))
−1 (s′− s

)
+ y1,

where (∆1(0))
−1 exists, because deg∆1(x) = n with its n roots at 2, . . . ,n+1 (so ∆1(0) ̸= 0).
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