1 Head Count

Consider a coin with $P[\text{Heads}] = 2/5$. Suppose you flip the coin 20 times, and define X to be the number of heads.

(a) What is $P[X = k]$, for some $0 \leq k \leq 20$?

(b) Name the distribution of X and what its parameters are.

(c) What is $P[X \geq 1]$? Hint: You should be able to do this without a summation.

(d) What is $P[12 \leq X \leq 14]$?

Solution:

(a) There are a total of $\binom{20}{k}$ ways to select k coins to be heads. The probability that the selected k coins to be heads is $(\frac{2}{5})^k$, and the probability that the rest are tails is $(\frac{3}{5})^{20-k}$. Putting this together, we have

$$P[X = k] = \binom{20}{k} \left(\frac{2}{5}\right)^k \left(\frac{3}{5}\right)^{20-k}.$$

(b) Since we have 20 independent trials, with each trial having a probability 2/5 of success, $X \sim \text{Binomial}(20, 2/5)$.

(c)

$$P[X \geq 1] = 1 - P[X = 0] = 1 - \left(\frac{3}{5}\right)^{20}.$$

(d)

$$P[12 \leq X \leq 14] = P[X = 12] + P[X = 13] + P[X = 14]$$

$$= \binom{20}{12} \left(\frac{2}{5}\right)^{12} \left(\frac{3}{5}\right)^8 + \binom{20}{13} \left(\frac{2}{5}\right)^{13} \left(\frac{3}{5}\right)^7 + \binom{20}{14} \left(\frac{2}{5}\right)^{14} \left(\frac{3}{5}\right)^6.$$
2 Head Count II

Consider a coin with \(P[\text{Heads}] = \frac{3}{4} \). Suppose you flip the coin until you see heads for the first time, and define \(X \) to be the number of times you flipped the coin.

(a) What is \(P[X = k] \), for some \(k \geq 1 \)?

(b) Name the distribution of \(X \) and what its parameters are.

(c) What is \(P[X > k] \), for some \(k \geq 0 \)?

(d) What is \(P[X < k] \), for some \(k \geq 1 \)?

(e) What is \(P[X > k \mid X > m] \), for some \(k \geq m \geq 0 \)? How does this relate to \(P[X > k - m] \)?

Solution:

(a) If we flipped \(k \) times, then we had \(k - 1 \) tails and 1 head, in that order, giving us

\[
P[X = k] = \frac{3}{4} \left(1 - \frac{3}{4} \right)^{k-1} \left(\frac{1}{4} \right)^{k-1}.
\]

(b) \(X \sim \text{Geometric} \left(\frac{3}{4} \right) \)

(c) If we had to flip more than \(k \) times before seeing our first heads, then our first \(k \) flips must have been tails, giving us

\[
P[X > k] = \left(1 - \frac{3}{4} \right)^k = \left(\frac{1}{4} \right)^k.
\]

(d) Notice \(P[X < k] = 1 - P[X \geq k] = 1 - P[X > k - 1] \) since \(X \) can only take on integer values. Along similar lines to the previous part, we then have

\[
P[X < k] = 1 - P[X > k - 1] = 1 - \left(1 - \frac{3}{4} \right)^{k-1} = 1 - \left(\frac{1}{4} \right)^{k-1}.
\]

(e) By part (c), we have

\[
P[X > k \mid X > m] = \frac{P[X > k \cap X > m]}{P[X > m]} = \frac{P[X > k]}{P[X > m]} = \left(\frac{1}{4} \right)^{k-m}.
\]

However, note that this is exactly \(P[X > k - m] \). The reason this makes sense is that if we want to compute the probability that the first heads occurs after \(k \) flips, and we know that the first heads occurs after \(m \) flips, then the first \(m \) flips are tails. Thus, by the independence of the coin flips, the first \(m \) flips don’t matter, and so we only need to compute the probability that the first heads occurs after \(k - m \) flips. This is called the memorylessness property of the geometric distribution.
3 Shuttles and Taxis at Airport

In front of terminal 3 at San Francisco Airport is a pickup area where shuttles and taxis arrive according to a Poisson distribution. The shuttles arrive at a rate $\lambda_1 = 1/20$ (i.e. 1 shuttle per 20 minutes) and the taxis arrive at a rate $\lambda_2 = 1/10$ (i.e. 1 taxi per 10 minutes) starting at 00:00. The shuttles and the taxis arrive independently.

(a) What is the distribution of the following:

(i) The number of taxis that arrive between times 00:00 and 00:20?
(ii) The number of shuttles that arrive between times 00:00 and 00:20?
(iii) The total number of pickup vehicles that arrive between times 00:00 and 00:20?

(b) What is the probability that exactly 1 shuttle and 3 taxis arrive between times 00:00 and 00:20?

(c) Given that exactly 1 pickup vehicle arrived between times 00:00 and 00:20, what is the conditional probability that this vehicle was a taxi?

(d) Suppose you reach the pickup area at 00:20. You learn that you missed 3 taxis and 1 shuttle in those 20 minutes. What is the probability that you need to wait for more than 10 mins until either a shuttle or a taxi arrives?

Solution:

(a) (i) Let $T([0, 20])$ denote the number of taxis that arrive between times 00:00 and 00:20. This interval has length 20 minutes, so the number of taxis $T([0, 20])$ arriving in this interval is distributed according to Poisson($\lambda_2 \cdot 20$) = Poisson(2), i.e.

$$\mathbb{P}[T([0, 20]) = t] = \frac{2^t e^{-2}}{t!}, \text{ for } t = 0, 1, 2, \ldots.$$

(ii) Let $S([0, 20])$ denote the number of shuttles that arrive between times 00:00 and 00:20. This interval has length 20 minutes, so the number of shuttles $S([0, 20])$ arriving in this interval is distributed according to Poisson($\lambda_1 \cdot 20$) = Poisson(1), i.e.

$$\mathbb{P}[S([0, 20]) = s] = \frac{1^s e^{-1}}{s!}, \text{ for } s = 0, 1, 2, \ldots.$$

(iii) Let $N([0, 20]) = S([0, 20]) + T([0, 20])$ denote the total number of pickup vehicles (taxis and shuttles) arriving between times 00:00 and 00:20. Since the sum of independent Poisson random variables is Poisson distributed with parameter given by the sum of the individual parameters, we have $N([0, 20]) \sim$ Poisson(3), i.e.

$$\mathbb{P}[N([0, 20]) = n] = \frac{3^n e^{-3}}{n!}, \text{ for } n = 0, 1, 2, \ldots.$$
(b) We have

\[\mathbb{P}[T([0, 20])] = 3 = \frac{2^3 e^{-2}}{3!} \quad \text{and} \quad \mathbb{P}[S([0, 20])] = 1 = \frac{1^0 e^{-1}}{1!}. \]

Since the taxis and the shuttles arrive independently, the probability that exactly 3 taxis and 1 shuttle arrive in this interval is given by the product of their individual probabilities, i.e.

\[\frac{2^3 e^{-2}}{3!} \cdot \frac{1^0 e^{-1}}{1!} = \frac{4}{3} e^{-3} \approx 0.0664. \]

(c) Let \(A \) be the event that exactly 1 taxi arrives between times 00:00 and 00:20. Let \(B \) be the event that exactly 1 vehicle arrives between times 00:00 and 00:20. We have

\[\mathbb{P}[B] = \frac{3^1 e^{-3}}{1!}. \]

Event \(A \cap B \) is the event that exactly 1 taxi and 0 shuttles arrive between times 00:00 and 00:20. Hence

\[\mathbb{P}[A \cap B] = \frac{2^1 e^{-2} \cdot 1^0 e^{-1}}{1!} \cdot 0! = \frac{2}{3} e^{-3}. \]

Thus, we get

\[\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{2}{3}. \]

(d) The event that you need to wait for more than 10 minutes starting 00:20 is equivalent to the event that no vehicle arrives between times 00:20 and 00:30. Let \(N([20, 30]) \) denote the number of vehicles that arrive between times 00:20 and 00:30. This interval has length 10 minutes, so \(N([20, 30]) \sim \text{Poisson}(\lambda_1 + \lambda_2 \cdot 10) = \text{Poisson}(3/2) \). Since Poisson arrivals in disjoint intervals are independent, we have

\[\mathbb{P}[N([20, 30]) = 0 | T([0, 20]) = 3, S([0, 20]) = 1] = \mathbb{P}[N([20, 30]) = 0] \sim \frac{1.5^0 e^{-1.5}}{0!} = e^{-1.5} \approx 0.2231. \]