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Summer 2025 Tate DIS 04D

Random Variables Intro
Note 15
Note 19

Random Variable: A random variable X is a function from Ω → R, mapping the possible out-
comes to real numbers. Note that this function itself is not random; the outcomes are random. We
define

P[X = k] = P[{ω ∈ Ω : X(ω) = k}].

Distribution of a random variable: the set of all (k,P[X = k]), describing the probability of attain-
ing each value of the random variable.

Bernoulli Distribution: X ∼ Bernoulli(p); X represents the outcome of a biased coin flip. X is
oftentimes also called an indicator random variable of an event with probability p. The distribution
is described by the following:

P[X = k] =

{
p if k = 1
1− p if k = 0

Binomial Distribution: X ∼ Binomial(n, p); X represents the number of successes in n indepen-
dent trials, where p is the probability of success in each trial.

Geometric Distribution: X ∼ Geometric(p); X represents the number of independent trials until
the first success (including the success), where p is the probability of success in each trial.

Poisson Distribution: X ∼ Poisson(λ ); X represents the number of occurrences of an event in one
unit of time, if on average there are λ occurrences in one unit of time. The distribution is described
by the following:

P[X = k] =
λ k

k!
e−λ

Further, if X ∼ Poisson(λx) and Y ∼ Poisson(λy) are independent, then X +Y ∼ Poisson(λx+λy).

1 Cookie Jars
Note 15 You have two jars of cookies, each of which starts with n cookies initially. Every day, when you

come home, you pick one of the two jars randomly (each jar is chosen with probability 1/2) and
eat one cookie from that jar. One day, you come home and reach inside one of the jars of cookies,
but you find that is empty! Let X be the random variable representing the number of remaining
cookies in non-empty jar at that time. What is the distribution of X?
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Solution: Assume that you found jar 1 empty; the probability that X = k and you found jar 1
empty is computed as follows.

In order for there to be k cookies remaining, you must have eaten a cookie for 2n− k days, and
then you must have chosen jar 1 (to discover that it is empty). Within those 2n− k days, exactly n
of those days you chose jar 1. The probability of this is

(2n−k
n

)
2−(2n−k).

Furthermore, the probability that you then discover jar 1 is empty the day after is 1/2. So, the
probability that X = k and you discover jar 1 empty is

(2n−k
n

)
2−(2n−k+1). However, we assumed

that we discovered jar 1 to be empty; the probability that X = k and jar 2 is empty is the same by
symmetry, so the overall probability that X = k is:

P[X = k] =
(

2n− k
n

)
1

22n−k , k ∈ {0, . . . ,n}.

2 Class Enrollment
Note 15
Note 19

Lydia has just started her CalCentral enrollment appointment. She needs to register for a geography
class and a history class. There are no waitlists, and she can attempt to enroll once per day in
either class or both. The CalCentral enrollment system is strange and picky, so the probability of
enrolling successfully in the geography class on each attempt is pg and the probability of enrolling
successfully in the history class on each attempt is ph. Also, these events are independent.

(a) Suppose Lydia begins by attempting to enroll in the geography class everyday and gets en-
rolled in it on day G. What is the distribution of G?

(b) Suppose she is not enrolled in the geography class after attempting each day for the first 7
days. What is P[G = i | G > 7], the conditional distribution of G given G > 7?

(c) Once she is enrolled in the geography class, she starts attempting to enroll in the history class
from day G+1 and gets enrolled in it on day H. Find the expected number of days it takes
Lydia to enroll in both the classes, i.e. E[H].

Suppose instead of attempting one by one, Lydia decides to attempt enrolling in both the classes
from day 1. Let G be the number of days it takes to enroll in the geography class, and H be the
number of days it takes to enroll in the history class.

(d) What is the distribution of G and H now? Are they independent?

(e) Let A denote the day she gets enrolled in her first class and let B denote the day she gets
enrolled in both the classes. What is the distribution of A?

(f) What is the expected number of days it takes Lydia to enroll in both classes now, i.e. E[B]?

(g) What is the expected number of classes she will be enrolled in by the end of 30 days?

Solution:

(a) G ∼ Geometric(pg).
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(b) Given that G > 7, the random variable G takes values in {8,9, . . .}. For i = 8,9, . . . ,

P[G = i | G > 7] =
P[G = i∧G > 7]

P[G > 7]
=

P[G = i]
P[G > 7]

=
pg(1− pg)

i−1

(1− pg)7 = pg(1− pg)
i−8

If K denotes the additional number of days it takes to get enrolled in the geography class after
day 7, i.e. K = G−7, then conditioned on G > 7, the random variable K has the geometric
distribution with parameter pg. Note that this is the same as the distribution of G. This is
known as the memoryless property of geometric distribution.

(c) We have H −G ∼ Geometric(ph). This means that E[G] = 1
pg

and E[H −G] = 1
ph

, and as
such

E[H] = E[G]+E[H −G] =
1
pg

+
1
ph

.

(d) G ∼ Geometric(pg), H ∼ Geometric(ph). Yes they are independent.

(e) We have A = min{G,H} and B = max{G,H}. We also use the following definition of the
minimum:

min(g,h) =

{
g if g ≤ h;
h if g > h.

Now, for all k ∈ {1,2, . . .}, min(G,H) = k is equivalent to (G = k)∩ (H ≥ k) or (H = k)∩
(G > k). Hence,

P[A = k] = P[min(G,H) = k]

= P[(G = k)∩ (H ≥ k)]+P[(H = k)∩ (G > k)]

= P[G = k] ·P[H ≥ k]+P[H = k] ·P[G > k] (G, H are independent)

= [(1− pg)
k−1 pg](1− ph)

k−1 +[(1− ph)
k−1 ph](1− pg)

k (G, H are geometric)

= ((1− pg)(1− ph))
k−1(pg + ph(1− pg))

= (1− pg − ph + ph pg)
k−1(pg + ph − pg ph).

But this final expression is precisely the probability that a geometric RV with parameter
pg + ph − pg ph takes the value k. Hence A ∼ Geom(pg + ph − pg ph).

An alternative, slightly cleaner approach is to work with the tail probabilities of the geometric
distribution, rather than with the usual point probabilities as above. In other words, we can
work with P[A ≥ k] rather than with P[A = k]; clearly the values P[A ≥ k] specify the values
P[A = k] since P[A = k] = P[A ≥ k]−P[A ≥ (k+1)], so it suffices to calculate them instead.
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We then get the following argument:

P[A ≥ k] = P[min(G,H)≥ k]

= P[(G ≥ k)∩ (H ≥ k)]

= P[G ≥ k] ·P[H ≥ k] (G, H are independent)

= (1− pg)
k−1(1− ph)

k−1 (G, H are geometric)

= ((1− pg)(1− ph))
k−1

= (1− pg − ph + pg ph)
k−1.

This is the tail probability of a geometric distribution with parameter pg + ph − pg ph, so we
are done.

(f) From part (e) we get E[A] = 1
pg+ph−pg ph

. From part (d) we have E[G] = 1
pg

and E[H] = 1
ph

.

We now observe that min{g,h}+ max{g,h} = g + h; using linearity of expectation, this
means that E[A]+E[B] = E[G]+E[H]. As such, we have

E[B] =
1
pg

+
1
ph

− 1
pg + ph − pg ph

.

(g) Let IG and IH be the indicator random variables of the events "G ≤ 30" and "H ≤ 30" respec-
tively. Then IG + IH is the number of classes she will be enrolled in within 30 days. Hence
the answer is

E[IG]+E[IH ] = P[G ≤ 30]+P[H ≤ 30] = 1− (1− pg)
30 +1− (1− ph)

30.

3 Fishy Computations
Note 19 Assume for each part that the random variable can be modelled by a Poisson distribution.

(a) Suppose that on average, a fisherman catches 20 salmon per week. What is the probability
that he will catch exactly 7 salmon this week?

(b) Suppose that on average, you go to Fisherman’s Wharf twice a year. What is the probability
that you will go at most once in 2024?

(c) Suppose that in March, on average, there are 5.7 boats that sail in Laguna Beach per day.
What is the probability there will be at least 3 boats sailing throughout the next two days in
Laguna?

(d) Denote X ∼ Pois(λ ). Prove that

E[X f (X)] = λ E[ f (X +1)]

for any function f .

Solution:
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(a) Let X be the number of salmon the fisherman catches per week. X ∼Poisson(20 salmon/week),
so

P[X = 7 salmon/week] =
207

7!
e−20 ≈ 5.23 ·10−4.

(b) Similarly X ∼ Poisson(2), so

P[X ≤ 1] =
20

0!
e−2 +

21

1!
e−2 ≈ 0.41.

(c) Let X1 be the number of sailing boats on the next day, and X2 be the number of sailing boats
on the day after next. Now, we can model sailing boats on day i as a Poisson distribution
Xi ∼ Poisson(λ = 5.7). Let Y be the number of boats that sail in the next two days. We
are interested in Y = X1 +X2. We know that the sum of two independent Poisson random
variables is Poisson. Thus, we have Y ∼ Poisson(λ = 5.7+5.7 = 11.4).

P[Y ≥ 3] = 1−P[Y < 3]
= 1−P[Y = 0∪Y = 1∪Y = 2]
= 1− (P[Y = 0]+P[Y = 1]+P[Y = 2])

= 1−
(

11.40

0!
e−11.4 +

11.41

1!
e−11.4 +

11.42

2!
e−11.4

)
≈ 0.999.

(d) We apply the Law of the Unconscious Statistician,

E[X f (X)] =
∞

∑
x=0

x f (x)P[X = x]

=
∞

∑
x=0

x f (x)
e−λ λ x

x!

=
∞

∑
x=1

x f (x)
e−λ λ x

x!

= λ

∞

∑
x=1

f (x)
e−λ λ x−1

(x−1)!

= λ

∞

∑
x=0

f (x+1)
e−λ λ x

x!

= λ E[ f (X +1)]

as desired.
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