
CS 70 Discrete Mathematics and Probability Theory
Summer 2025 Tate DIS 05D

Concentration Inequalities Intro
Markov’s Inequality: For any nonnegative random variable X and t > 0,

P[X ≥ t]≤ E[X ]

t
.

Chebyshev’s Inequality: For any random variable X and c > 0,

P[|X −E[X ]| ≥ c]≤ Var(X)

c2 .

Law of Large Numbers: Let X1,X2, . . . ,Xn be i.i.d. random variables with mean µ and variance
σ2. We have the following:

E

[
1
n

n

∑
i=1

Xi

]
= µ

Var

(
1
n

n

∑
i=1

Xi

)
=

σ2

n
.

Applying Chebyshev’s inequality on the sample mean 1
n ∑

n
i=1 Xi, we have that

P

[∣∣∣∣∣1n n

∑
i=1

Xi −µ

∣∣∣∣∣≥ ε

]
≤ σ2

nε2

which means that as n → ∞, the probability of the sample mean deviating from the true mean by
any ε > 0 approaches zero.
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1 Probabilistic Bounds
Note 17 A random variable X has variance Var(X) = 9 and expectation E[X ] = 2. Furthermore, the value

of X is never greater than 10. Given this information, provide either a proof or a counterexample
for the following statements.

(a) E[X2] = 13.

(b) P[X = 2]> 0.

(c) P[X ≥ 2] = P[X ≤ 2]. (Feel free to skip the variance computations for this subpart.)

For the below parts, you should use Markov’s and Chebyshev’s inequalities to provide bounds on
the probabilities. Remember that Markov’s inequality requires a nonnegative random variable Y ,
and Chebyshev’s inequality provides a bound on the absolute deviation from the mean |X −µ|.

(d) P[X ≤ 1]≤ 8/9.

(e) P[X ≥ 6]≤ 9/16.

Solution:

(a) TRUE. Since 9 = Var(X) = E[X2]−E[X ]2 = E[X2]−22, we have E[X2] = 9+4 = 13.

(b) FALSE. It is not necessary for a random variable to be able to take on its mean as a value.
As one possible counterexample, construct a random variable X that satisfies the conditions
in the question but does not take on the value 2.

A simple example would be a random variable that takes on 2 values. In order to make the
mean be 2, we can have the two values be P[X = 1] = P[X = 3] = 1/2. This would only have
a variance of 1, so we can scale the distance by 3 (and remember that variance is the expected
squared distance). Therefore, we can choose P[X = −1] = P[X = 5] = 1/2, which ensures
that the mean and variance are both correct.

(c) FALSE. The median of a random variable is not necessarily the mean, unless it is symmetric.
As one possible counterexample, construct a random variable X that satisfies the conditions
in the question but does not have an equal chance of being less than or greater than 2.

A simple example would be a random variable that takes on 2 values, where one value is
more likely than the other. If we have P[X = 0] = 3/4 and P[X = 8] = 1/4, then we have
E[X ] = 2 and Var(X) = 12. Similarly to the previous part, we can scale the distances to the
mean by

√
3/4 to decrease the variance to be the desired quantity. Therefore, we can choose

P[X = 2− 2
√

3/4] = 3/4 and P[X = 2+ 6
√

3/4] = 1/4, which ensures that the mean and
variance are both correct. This random variable is not symmetric about its mean, so it does
not have an equal chance of being less than or greater than 2.

(d) TRUE. Let Y = 10−X . Since X is never exceeds 10, Y is a non-negative random variable.
By Markov’s inequality,

P[10−X ≥ a] = P[Y ≥ a]≤ E[Y ]
a

=
E[10−X ]

a
=

8
a
.
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Setting a = 9, we get P[X ≤ 1] = P[10−X ≥ 9]≤ 8/9.

As a side note, if we were to try Chebyshev’s inequality instead, noting that

P[X ≤ 1]+P[X ≥ 3] = P[|X −2| ≥ 1] = P[|X −E[X ]| ≥ 1],

we’d get

P[X ≤ 1]≤ P[X ≤ 1]+P[X ≥ 3] = P[|X −2| ≥ 1]≤ Var(X)

1
= 9,

which is an unhelpful bound.

(e) TRUE. Chebyshev’s inequality says P[|X −E[X ]| ≥ a]≤Var(X)/a2. If we set a= 4, we have

P[|X −2| ≥ 4]≤ 9
16

.

Now we observe that P[X ≥ 6] ≤ P[|X −2| ≥ 4], because the event X ≥ 6 is a subset of the
event |X −2| ≥ 4.

As a side note, we can’t apply Markov’s inequality here; as-is, X is not nonnegative, and
if we did the same transformation Y = 10−X from before, we’d want an upper bound on
P[10−X ≤ 10−6] = P[Y ≤ 4], which we cannot do with Markov’s inequality; it only gives
an upper bound on probabilities of the form P[Y ≥ a].

2 Vegas
Note 17 On the planet Vegas, everyone carries a coin. Many people are honest and carry a fair coin (heads

on one side and tails on the other), but a fraction p of them cheat and carry a trick coin with heads
on both sides. You want to estimate p with the following experiment: you pick a random sample
of n people and ask each one to flip their coin. Assume that each person is independently likely to
carry a fair or a trick coin.

(a) Let X be the proportion of coin flips which are heads. Find E[X ].

(b) Given the results of your experiment, how should you estimate p? (Hint: Construct an
unbiased estimator for p using part (a). Recall that p̂ is an unbiased estimator if E[p̂] = p.)

(c) How many people do you need to ask to be 95% sure that your answer is off by at most 0.05?

Solution:

(a) Let Xi be the indicator that the ith person’s coin flips heads. Then X = 1
n ∑

n
i=1 Xi. Applying

linearity, we have

E[X ] =
1
n

n

∑
i=1

E[Xi] = E[Xi].

By total probability,

E[Xi] = p ·1+(1− p) · 1
2
=

1
2
(p+1).

CS 70, Summer 2025, DIS 05D 3

https://www.eecs70.org/assets/pdf/notes/n17.pdf


(b) We want to construct an estimate p̂ such that E[p̂] = p. Then, if we have a large enough
sample, we’d expect to get a good estimate of p. In other words, we measure X , the fraction
of people whose coin flips heads. How can we use this observation to construct p̂? From
part (a), E[X ] = 1

2(p+1). By applying (reverse) linearity to isolate p, we find that

p = 2E[X ]−1 = E[2X −1].

Thus, our estimator p̂ should be 2X −1.

(c) We want to find n such that P[|p̂− p| ≤ 0.05] > 0.95. Another way to state this is that we
want

P[|p̂− p|> 0.05]≤ 0.05.

Notice that E[p̂] = p by construction, so we can immediately apply Chebyshev’s inequality
on p̂. What we get is:

P[|p̂− p|> 0.05]≤ P[p̂− p| ≥ 0.05]≤ Var[p̂]
0.052

If Var(p̂)
0.052 ≤ 0.05, then we have P[|p̂− p| > 0.05] ≤ 0.05 as desired. So, we want n such that

Var(p̂)≤ 0.053.

Var(p̂) = Var(2X −1) = 4Var(X) =
4
n2 Var

(
n

∑
i=1

Xi

)
=

4
n

Var(X1).

But Xi is an indicator (Bernoulli variable), so its variance is bounded by 1
4 (note that p(1− p)

is maximized at p = 1
2 to yield a value of 1

4 ). Therefore we have

Var[p̂]≤ 4
n

1
4
=

1
n
.

So, we choose n such that 1
n ≤ 0.053, giving n ≥ 1

0.053 = 8000.

3 Working with the Law of Large Numbers
Note 17 (a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads.

Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads.
Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60%
heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which
number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

Solution:
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(a) 10 tosses. By LLN, the sample mean should have higher probability to be close to the popu-
lation mean as n increases. Therefore the average proportion of coins that are heads should
be closer to 0.50, and has a lower chance of being greater than 0.60 if there are 100 tosses
(compared with 10 tosses).

(b) 100 tosses. Again, by LLN, the sample mean should have higher probability to be close to
the population mean as n increases. Therefore the average proportion of coins that are heads
should be closer to 0.50, and has a lower chance of being smaller than 0.40 if there are 100
tosses. A lower chance of being smaller than 0.40 is the desired result.

(c) 100 tosses. Again, by LLN, the average proportion of coins that are heads should be closer to
0.50, and has a lower chance of being both smaller than 0.40 if there are 100 tosses. Similarly,
there is a lower chance of being larger than 0.60 if there are 100 tosses. Lower chances of
both of these events is desired if we want the fraction of heads to be between 0.4 and 0.6.

(d) 10 tosses. Intuitively, the more tosses we have, the harder it gets for exactly half of the tosses
to be heads; more tosses gives more of a restriction. In extremes, compare the probability
of getting exactly 1 head out of 2 tosses (this is 0.5), and the probability of getting exactly
500,000 heads out of a million tosses; the latter is much much smaller than 0.5, because
we’re targeting such a specific number.

More rigorously, we can compare the probability of getting equal number of heads and tails
between 2n and 2n+2 tosses.

P[n heads in 2n tosses] =
(

2n
n

)
1

22n

P[n+1 heads in 2n+2 tosses] =
(

2n+2
n+1

)
1

22n+2 =
(2n+2)!

(n+1)!(n+1)!
· 1

22n+2

=
(2n+2)(2n+1)2n!
(n+1)(n+1)n!n!

· 1
22n+2

=
2n+2
n+1

· 2n+1
n+1

(
2n
n

)
· 1

22n+2

<

(
2n+2
n+1

)2(2n
n

)
· 1

22n+2

= 4
(

2n
n

)
· 1

22n+2 =

(
2n
n

)
1

22n = P[n heads in 2n tosses]

As we increment n, the probability will always decrease. Therefore, the larger n is, the less
probability we’ll get exactly 50% heads. □

Note: By Stirling’s approximation,
(2n

n

)
2−2n is roughly (πn)−1/2 for large n.

See https://github.com/dingyiming0427/CS70-demo/ for a code demo.
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