1 Counting Cartesian Products

For two sets A and B, define the cartesian product as $A \times B = \{(a, b) : a \in A, b \in B\}$.

(a) Given two countable sets A and B, prove that $A \times B$ is countable.

(b) Given a finite number of countable sets A_1, A_2, \ldots, A_n, prove that

$$A_1 \times A_2 \times \cdots \times A_n$$

is countable.

Solution:

(a) As shown in lecture, $\mathbb{N} \times \mathbb{N}$ is countable by creating a zigzag map that enumerates through the pairs: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), \ldots$. Since A and B are both countable, there exists a bijection between each set and a subset of \mathbb{N}. Thus we know that $A \times B$ is countable because there is a bijection between a subset of $\mathbb{N} \times \mathbb{N}$ and $A \times B : f(i, j) = (A_i, B_j)$. We can enumerate the pairs (a, b) similarly.

(b) Proceed by induction.

Base Case: $n = 2$. We showed in part (a) that $A_1 \times A_2$ is countable since both A_1 and A_2 are countable.

Induction Hypothesis: Assume that for some $n \in \mathbb{N}$, $A_1 \times A_2 \times \cdots \times A_n$ is countable.

Induction Step: Consider $A_1 \times \cdots \times A_n \times A_{n+1}$. We know from our hypothesis that $A_1 \times \cdots \times A_n$ is countable, call it $C = A_1 \times \cdots \times A_n$. We proved in part (a) that since C is countable and A_{n+1} are countable, $C \times A_{n+1}$ is countable, which proves our claim.

2 Counting Functions

Are the following sets countable or uncountable? Prove your claims.

(a) The set of all functions f from \mathbb{N} to \mathbb{N} such that f is non-decreasing. That is, $f(x) \leq f(y)$ whenever $x \leq y$.

(b) The set of all functions f from \mathbb{N} to \mathbb{N} such that f is non-increasing. That is, $f(x) \geq f(y)$ whenever $x \leq y$.
Solution:

(a) Uncountable: Let us assume the contrary and proceed with a diagonalization argument. If there are countably many such function we can enumerate them as

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>$f_0(0)$</td>
<td>$f_0(1)$</td>
<td>$f_0(2)$</td>
<td>$f_0(3)$</td>
<td>...</td>
</tr>
<tr>
<td>f_1</td>
<td>$f_1(0)$</td>
<td>$f_1(1)$</td>
<td>$f_1(2)$</td>
<td>$f_1(3)$</td>
<td>...</td>
</tr>
<tr>
<td>f_2</td>
<td>$f_2(0)$</td>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>...</td>
</tr>
<tr>
<td>f_3</td>
<td>$f_3(0)$</td>
<td>$f_3(1)$</td>
<td>$f_3(2)$</td>
<td>$f_3(3)$</td>
<td>...</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>...</td>
</tr>
</tbody>
</table>

Now go along the diagonal and define f such that $f(x) > f_i(x)$ and $f(y) > f(x)$ if $y > x$, which is possible because at step k we only need to find a number $\in \mathbb{N}$ greater than all the $f_j(j)$ for $j \in \{0, \ldots, k\}$. This function differs from each f_i and therefore cannot be on the list, hence the list does not exhaust all non-decreasing functions. As a result, there must be uncountably many such functions.

Alternative Solution: Look at the subset \mathcal{J} of strictly increasing functions. Any such f is uniquely identified by its image which is an infinite subset of \mathbb{N}. But the set of infinite subsets of \mathbb{N} is uncountable. This is because the set of all subsets of \mathbb{N} is uncountable, and the set of all finite subsets of \mathbb{N} is countable. So \mathcal{J} is uncountable and hence the set of all non-decreasing functions must be too.

Alternative Solution 2: We can inject the set of infinitely long binary strings into the set of non-decreasing functions as follows. For any infinitely long binary string b, let $f(n)$ be equal to the number of 1’s appearing in the first n-digits of b. It is clear that the function f so defined is non-decreasing. Also, since the function f is uniquely defined by the infinitely long binary string, the mapping from binary strings to non-decreasing functions is injective. Since the set of infinite binary strings is uncountable, and we produced an injection from that set to the set of non-decreasing functions, that set must be uncountable as well.

(b) Countable: Let D_n be the subset of non-increasing functions for which $f(0) = n$. Any such function must stop decreasing at some point (because \mathbb{N} has a smallest number), so there can only be finitely many (at most n) points $X_f = \{x_1, \ldots, x_k\}$ at which f decreases. Let y_i be the amount by which f decreases at x_i, then f is fully described by $\{(x_1, y_1), \ldots, (x_k, y_k), (-1, 0), \ldots, (-1, 0)\} \in \mathbb{N}^n = \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ (n times), where we padded the k values associated with f with $n - k (-1, 0)$s. In Lecture note 10, we have seen that $\mathbb{N} \times \mathbb{N}$ is countable by the spiral method. Using it repeatedly, we get $\mathbb{N}^{(2)}$ is countable for all $l \in \mathbb{N}$. This gives us that \mathbb{N}^n is countably for any finite n (because $\mathbb{N}^n \subset \mathbb{N}^{(2)}$ where l is such that $2^l \geq n$). Hence D_n is countable. Since each set D_n is countable we can enumerate it. Map an element of D_n to (n, j) where j is the label of that element produced by the enumeration of D_n. This produces an injective map from $\bigcup_{n \in \mathbb{N}} D_n$ to $\mathbb{N} \times \mathbb{N}$ and we know that $\mathbb{N} \times \mathbb{N}$ is countable from Lecture note 10 (via spiral method). Now the set of all non-increasing functions is $\bigcup_{i \in \mathbb{N}} D_n$, and thus countable.
3 Undecided?

Let us think of a computer as a machine which can be in any of \(n \) states \(\{s_1, \ldots, s_n\} \). The state of a 10 bit computer might for instance be specified by a bit string of length 10, making for a total of \(2^{10} \) states that this computer could be in at any given point in time. An algorithm \(\mathcal{A} \) then is a list of \(k \) instructions \((i_0, i_2, \ldots, i_{k-1}) \), where each \(i_l \) is a function of a state \(c \) that returns another state \(u \) and a number \(j \). Executing \(\mathcal{A}(x) \) means computing

\[
(c_1, j_1) = i_0(x), \quad (c_2, j_2) = i_{j_1}(c_1), \quad (c_3, j_3) = i_{j_2}(c_2), \quad \ldots
\]

until \(j_\ell \geq k \) for some \(\ell \), at which point the algorithm halts and returns \(c_{\ell-1} \).

(a) How many iterations can an algorithm of \(k \) instructions perform on an \(n \)-state machine (at most) without repeating any computation?

(b) Show that if the algorithm is still running after \(2n^2k^2 \) iterations, it will loop forever.

(c) Give an algorithm that decides whether an algorithm \(\mathcal{A} \) halts on input \(x \) or not. Does your construction contradict the undecidability of the halting problem?

Solution:

(a) Each of the \(k \) instruction can be called on at most \(n \) different states, therefore there are at most \(n \cdot k \) distinct computations that can be performed during any execution. After \(n \cdot k + 1 \) iterations we must have repeated one of these computations.

(b) Since \(2n^2k^2 > n \cdot k + 1 \), \(\mathcal{A} \) must repeat a computation \(i_s(c_t) \) for some \((s, t) \in \{1, \ldots, n\} \times \{0, \ldots, k-1\} \). But we know that when \(i_s(c_t) \) is performed the second time, its consecutive computations will be precisely the same that followed the first evaluation of \(i_s(c_t) \). In particular, we will see \(i_s(c_t) \) a third time, and hence a fourth, fifth time etc.

(c) From our solution to part (b) it follows that we only need to check whether after \(2n^2k^2 \) iterations, \(\mathcal{A}(x) \) is still running or not. If it is, \(\mathcal{A}(x) \) does not halt, otherwise it does. This does not contradict the undecidability of the halting problem, since it only states the inability to decide whether an arbitrary algorithm halts. Here we only proved the decidability for algorithms that can be run on an \(n \)-state machine, of which there are only finitely many!

4 Code Reachability

Consider triplets \((M, x, L)\) where

\[
M \text{ is a Java program} \quad x \text{ is some input} \quad L \text{ is an integer}
\]
and the question of: if we execute $M(x)$, do we ever hit line L?

Prove this problem is undecidable.

Solution:

Suppose we had a procedure that could decide the above. Consider the following program for deciding whether $M(x)$ halts:

```python
main():
    run M(x);
    print('hello')
```

Then we ask, is `print('hello')` ever executed? If so, it means that $M(x)$ halts. Otherwise, $M(x)$ infinite looped.