Countability: True or False

(a) The set of all irrational numbers \(\mathbb{R} \setminus \mathbb{Q} \) (i.e. real numbers that are not rational) is uncountable.

(b) The set of integers \(x \) that solve the equation \(3x \equiv 2 \pmod{10} \) is countably infinite.

(c) The set of real solutions for the equation \(x + y = 1 \) is countable.

For any two functions \(f : Y \to Z \) and \(g : X \to Y \), let their composition \(f \circ g : X \to Z \) be given by \(f \circ g = f(g(x)) \) for all \(x \in X \). Determine if the following statements are true or false.

(d) \(f \) and \(g \) are injective (one-to-one) \(\implies f \circ g \) is injective (one-to-one).

(e) \(f \) is surjective (onto) \(\implies f \circ g \) is surjective (onto).

Solution:

(a) **True.** Proof by contradiction. Suppose the set of irrationals is countable. From Lecture note 10 we know that the set \(\mathbb{Q} \) is countable. Since union of two countable sets is countable, this would imply that the set \(\mathbb{R} \) is countable. But again from Lecture note 10 we know that this is not true. Contradiction!

(b) **True.** Multiplying both sides of the modular equation by 7 (the multiplicative inverse of 3 with respect to 10) we get \(x \equiv 4 \pmod{10} \). The set of all integers that solve this is \(S = \{10k + 4 : k \in \mathbb{Z}\} \) and it is clear that the mapping \(k \in \mathbb{Z} \) to \(10k + 4 \in S \) is a bijection. Since the set \(\mathbb{Z} \) is countably infinite, the set \(S \) is also countably infinite.

(c) **False.** Let \(S \subset \mathbb{R} \times \mathbb{R} \) denote the set of all real solutions for the given equation. For any \(x' \in \mathbb{R} \), the pair \((x',y') \in S\) if and only if \(y' = 1 - x' \). Thus \(S = \{(x,1-x) : x \in \mathbb{R}\} \). Besides, the mapping \(x \to (x,1-x) \) is a bijection from \(\mathbb{R} \) to \(S \). Since \(\mathbb{R} \) is uncountable, we have that \(S \) is uncountable too.

(d) **True.** Recall that a function \(h : A \to B \) is injective iff \(a_1 \neq a_2 \implies h(a_1) \neq h(a_2) \) for all \(a_1, a_2 \in A \). Let \(x_1, x_2 \in X \) be arbitrary such that \(x_1 \neq x_2 \). Since \(g \) is injective, we have \(g(x_1) \neq g(x_2) \). Now, since \(f \) is injective, we have \(f(g(x_1)) \neq f(g(x_2)) \). Hence \(f \circ g \) is injective.

(e) **False.** Recall that a function \(h : A \to B \) is surjective iff \(\forall b \in B, \exists a \in A \) such that \(h(a) = b \). Let \(g : \{0,1\} \to \{0,1\} \) be given by \(g(0) = g(1) = 0 \). Let \(f : \{0,1\} \to \{0,1\} \) be given by \(f(0) = 0 \) and \(f(1) = 1 \). Then \(f \circ g : \{0,1\} \to \{0,1\} \) is given by \((f \circ g)(0) = (f \circ g)(1) = 0 \). Here \(f \) is surjective but \(f \circ g \) is not surjective.
2 Counting Cartesian Products

For two sets A and B, define the cartesian product as $A \times B = \{ (a, b) : a \in A, b \in B \}$.

(a) Given two countable sets A and B, prove that $A \times B$ is countable.

(b) Given a finite number of countable sets A_1, A_2, \ldots, A_n, prove that

$$A_1 \times A_2 \times \cdots \times A_n$$

is countable.

Solution:

(a) As shown in lecture, $\mathbb{N} \times \mathbb{N}$ is countable by creating a zigzag map that enumerates through the pairs: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), \ldots$. Since A and B are both countable, there exists a bijection between each set and a subset of \mathbb{N}. Thus we know that $A \times B$ is countable because there is a bijection between a subset of $\mathbb{N} \times \mathbb{N}$ and $A \times B$: $f(i, j) = (A_i, B_j)$. We can enumerate the pairs (a, b) similarly.

(b) Proceed by induction.

Base Case: $n = 2$. We showed in part (a) that $A_1 \times A_2$ is countable since both A_1 and A_2 are countable.

Induction Hypothesis: Assume that for some $n \in \mathbb{N}$, $A_1 \times A_2 \times \cdots \times A_n$ is countable.

Induction Step: Consider $A_1 \times \cdots \times A_n \times A_{n+1}$. We know from our hypothesis that $A_1 \times \cdots \times A_n$ is countable, call it $C = A_1 \times \cdots \times A_n$. We proved in part (a) that since C is countable and A_{n+1} are countable, $C \times A_{n+1}$ is countable, which proves our claim.

3 Undecided?

Let us think of a computer as a machine which can be in any of n states $\{s_1, \ldots, s_n\}$. The state of a 10 bit computer might for instance be specified by a bit string of length 10, making for a total of 2^{10} states that this computer could be in at any given point in time. An algorithm \mathcal{A} then is a list of k instructions $(i_0, i_1, \ldots, i_{k-1})$, where each i_ℓ is a function of a state c that returns another state u and a number j describing the next instruction to be run. Executing $\mathcal{A}(x)$ means computing

$$(c_1, j_1) = i_0(x), \quad (c_2, j_2) = i_{j_1}(c_1), \quad (c_3, j_3) = i_{j_2}(c_2), \quad \ldots$$

until $j_\ell \geq k$ for some ℓ, at which point the algorithm halts and returns $s_{\ell-1}$.

(a) How many iterations can an algorithm of k instructions perform on an n-state machine (at most) without repeating any computation?

(b) Show that if the algorithm is still running after $nk + 1$ iterations, it will loop forever.
(c) Give an algorithm that decides whether an algorithm \(\mathcal{A} \) halts on input \(x \) or not. Does your construction contradict the undecidability of the halting problem?

Solution:

(a) Each of the \(k \) instruction can be called on at most \(n \) different states, therefore there are at most \(nk \) distinct computations that can be performed during any execution.

(b) Since \(nk + 1 > nk \), by the Pigeonhole Principle, \(\mathcal{A} \) must repeat a computation \(i_m(s_t) \) for some \((m,t) \in \{1, \ldots, n\} \times \{0, \ldots, k-1\} \). But we know that when \(i_m(s_t) \) is performed the second time, its consecutive computations will be precisely the same that followed the first evaluation of \(i_m(s_t) \). In particular, we will see \(i_m(s_t) \) a third time, and hence a fourth, fifth time etc.

(c) From our solution to part (b) it follows that we only need to check whether after \(nk + 1 \) iterations, \(\mathcal{A}(x) \) is still running or not. If it is, \(\mathcal{A}(x) \) does not halt, otherwise it does. This does not contradict the undecidability of the halting problem, since it only states the inability to decide whether an arbitrary algorithm halts. Here we only proved the decidability for algorithms that can be run on an \(n \)-state machine, of which there are only finitely many!

4 Code Reachability

Consider triplets \((M, x, L)\) where

- \(M \) is a Java program
- \(x \) is some input
- \(L \) is an integer

and the question of: if we execute \(M(x) \), do we ever hit line \(L \)?

Prove this problem is undecidable.

Solution:

Suppose we had a procedure that could decide the above; call it \(\text{Reachable}(M, x, L) \). Consider the following example of a program deciding whether \(P(x) \) halts:

\[
\text{Halt}(P, x): \\
\text{def } M(t): \\
\quad \text{run } P(x) \ #\text{line 1 of } M \\
\quad \text{return } \#\text{line 2 of } M \\
\text{return } \text{Reachable}(M, 0, 2)
\]

Program \(M \) reaches line 2 if and only if \(P(x) \) halted. Thus, we have implemented a solution to the halting problem — contradiction.