Note 12
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1 Computability Intro

Computability: The main focus is on the Halting problem, and programs that provably cannot
exist.

The Halting problem is the problem of determining whether a program P run on input x ever halts,
or whether it loops forever. It turns out that there does not exist any program that solves this
problem.

Using this information, we can prove that other problems also cannot be solved by a computer
program, through the use of reductions. The main idea is to show that if a given problem can be
solved by a computer program TestX, then the Halting problem can also be solved by a computer
program TestHalt that uses TestX as a subroutine.

The primary template we’ll use for this course is as follows. Suppose we want to show that a
program TestX does not exist, where TestX(Q, y) tries to determine whether a program Q on
input y does some task 2" (i.e. it outputs “True” if Q(y) does the task 2", and it outputs “False” if
Q(y) does not do the task .2"). We can define TestHalt as follows (in pseudocode):

def TestHalt (P, x):
def Q(y):
run P(x)
do &

return TestX(Q, y) # for some given y

Note that this template will be sufficient for our purposes in CS70, but more complex reductions
will require more sophisticated programs—you’ll learn more about this in classes like CS170 and
CS172.

(a) Consider the reduction template given above. Let’s break down what it’s doing.

We follow an argument by contradiction—we assume that there is a program TestX(Q, y)
that is able to determine whether another program Q on input y does some task 2.

There are two cases: either P(x) halts, or it loops forever. We’d like to show that TestHalt
as defined above returns the correct answer in both of these cases.

(i) Suppose P(x) halts. What does TestHalt return, and why?
(ii) Suppose P(x) loops forever. What does TestHalt return, and why?

(iii)) What does this tell us about the existence of TestX? Briefly justify your answer.
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Solution:

(a) (i) If P(x) halts, then Q(y) will finish executing P(x), and eventually do the task .2". This
means that TestX would return “True”, since Q(y) does eventually do 2.

(ii) If P(x) loops forever, then Q(y) will get stuck while executing P(x), and will never get
to doing the task 2". This means that TestX would return “False”, since Q(y) never
does 2.

(ii1)) These answers returned by TestHalt exactly solve the Halting problem! However,
we’ve already shown that the Halting problem cannot be solved by a computer program—
this is a contradiction. As such, TestX cannot exist.

2 Hello World!

Note 12 Determine the computability of the following tasks. If it’s not computable, write a reduction or
self-reference proof. If it is, write the program. Throughout this problem, you are allowed to
execute programs while surpressing their print statements.

(a) You want to determine whether a program P on input x prints "Hello World!". Is there a
computer program that can perform this task? Justify your answer.

(b) You want to determine whether a program P prints "Hello World!" while or before running
the kth line in the program. Is there a computer program that can perform this task? Justify
your answer.

(¢) You want to determine whether a program P prints "Hello World!" in the first k steps of its
execution. Is there a computer program that can perform this task? Justify your answer.

Solution:
(a) Uncomputable. We will reduce TestHalt to PrintsHW(P,x).

TestHalt (P, x):
P’ (x):
run P(x) while suppressing print statements
print ("Hello World!")

return PrintsHW(P’, x)

If PrintsHW exists, TestHalt must also exist by this reduction. Since TestHalt cannot
exist, PrintsHW cannot exist.

(b) Uncomputable. We will reduce TestHalt to PrintsHWByK(P,x,k).

TestHalt (P, x):
P’ (x):
run P(x) while suppressing print statements
print ("Hello World!")
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return PrintsHWByK(P’, x, 2)

Here, we notice that P’ has only two lines (or at most len(P) + 1 lines, depending on how
this is implemented), and we print “Hello World!” by the last line of P if and only if P(x)
halts.

Alternatively, we can reduce PrintsHW(P,x) from part (a) to this program PrintsHWByK(P,x,k):

PrintsHW (P, x):
for i in range(len(P)):
if PrintsHWByK (P, x, i):
return true
return false

Note that we technically need to iterate through all the lines here, since there may be large
jumps within the code of P; this means that we may for example jump from line 1 to line
100 and back to line 2 to print “Hello World!”, but PrintsHWByK(P,x, 100) will return false,
since we first reach line 100 without printing “Hello World!”.

(c) Computable. You can simply run the program until k steps are executed. If P has printed
“Hello World!” by then, return true. Else, return false.

The reason that part (b) is uncomputable while part (c) is computable is that it’s not possi-
ble to determine if we ever execute a specific line because this depends on the logic of the
program, but the number of computer instructions can be counted.

3 Undecided?

Let us think of a computer as a machine which can be in any of n states {s1,...,s,}. The state of

a 10 bit computer might for instance be specified by a bit string of length 10, making for a total of

210 states that this computer could be in at any given point in time. An algorithm .27 then is a list

of k instructions (ig, i1,...,ix_1), where each iy is a function of a state ¢ that returns another state u

and a number j describing the next instruction to be run. Executing .7 (x) means computing
(c1,J1) =io(x), (c2,j2) = ij(c1), (c3,/3) =ij(c2),

until j, > k for some ¢, at which point the algorithm halts and returns sy_;.

(a) How many iterations can an algorithm of k instructions perform on an n-state machine (at
most) without repeating any computation?

(b) Show that if the algorithm is still running after nk + 1 iterations, it will loop forever.

(c) Give an algorithm that decides whether an algorithm .2 halts on input x or not. Does your
contruction contradict the undecidability of the halting problem?

Solution:
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(a) Each of the k instruction can be called on at most n different states, therefore there are at
most nk distinct computations that can be performed during any execution.

(b) Since nk+ 1 > nk, by the Pigeonhole Principle, .27 must repeat a computation i,,(s;) for some
(m,t) € {1,...,n} x{0,...,k—1}. But we know that when iy,,(s;) is performed the second
time, its consective computations will be precisely the same that followed the first evaluation
of ip(s;). In particular, we will see iy, (s;) a third time, and hence a fourth, fifth time etc.

(c) From our solution to part (b) it follows that we only need to check whether after nk 4 1
iterations, o7 (x) is still running or not. If it is, <7 (x) does not halt, otherwise it does. This
does not contradict the undecidability of the halting problem, since it only states the inability
to decide whether an arbitrary algorithm halts. Here we only proved the decidability for
algorithms that can be run on an n-state machine, of which there are only finitely many!

4 Code Reachability

Note 12 Consider triplets (M,x, L) where
* Mis a Java program
* x is some input
* L is an integer
and the question of: if we execute M(x), do we ever hit line L?

Prove this problem is undecidable.

Solution: Suppose we had a procedure that could decide the above; call it Reachable (M, x, L).
Consider the following example of a program deciding whether P(x) halts:

def Halt(P, x):

def M(t):
run P(x) # line 1 of M
return # line 2 of M

return Reachable (M, 0, 2)

Program M reaches line 2 if and only if P(x) halted. Thus, we have implemented a solution to the
halting problem — contradiction.
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