CS 70 Discrete Mathematics and Probability Theory Spring 2025 Rao DIS 8A

Discrete Probability Intro

Note 13

Probability Space: A probability space is a tuple (Ω, \mathbb{P}) , where Ω is the *sample space* and \mathbb{P} is the *probability function* on the sample space.

Specifically, Ω is the set of all outcomes ω , and \mathbb{P} is a function \mathbb{P} : $\Omega \to [0,1]$, assigning a probability to each outcome, satisfying the following conditions:

$$0 \leq \mathbb{P}[\pmb{\omega}] \leq 1 \quad \text{ and } \quad \sum_{\pmb{\omega} \in \Omega} \mathbb{P}[\pmb{\omega}] = 1.$$

Event: an event A is a subset of Ω , i.e. a collection of some outcomes in the sample space. We define

$$\mathbb{P}[A] = \sum_{\boldsymbol{\omega} \in A} \mathbb{P}[\boldsymbol{\omega}].$$

Uniform Probability Space: all outcomes are assigned the same probability, i.e. $\mathbb{P}[\omega] = \frac{1}{|\Omega|}$; this is just counting!

With an event A in a uniform probability space, $\mathbb{P}[A] = \frac{|A|}{|\Omega|}$, which is again more counting!

1 Venn Diagram

Note 13

Out of 1,000 computer science students, 400 belong to a club (and may work part time), 500 work part time (and may belong to a club), and 50 belong to a club and work part time.

- (a) Suppose we choose a student uniformly at random. Let C be the event that the student belongs to a club and P the event that the student works part time. Draw a picture of the sample space Ω and the events C and P.
- (b) What is the probability that the student belongs to a club?
- (c) What is the probability that the student works part time?

- (d) What is the probability that the student belongs to a club AND works part time?
- (e) What is the probability that the student belongs to a club OR works part time?

2 Flippin' Coins

Note 13

Suppose we have an unbiased coin, with outcomes H and T, with probability of heads $\mathbb{P}[H] = 1/2$ and probability of tails also $\mathbb{P}[T] = 1/2$. Suppose we perform an experiment in which we toss the coin 3 times. An outcome of this experiment is (X_1, X_2, X_3) , where $X_i \in \{H, T\}$.

- (a) What is the sample space for our experiment?
- (b) Which of the following are examples of *events*? Select all that apply.
 - $\{(H,H,T),(H,H),(T)\}$
 - $\{(T,H,H),(H,T,H),(H,H,T),(H,H,H)\}$
 - $\{(T, T, T)\}$
 - $\{(T,T,T),(H,H,H)\}$
 - $\{(T,H,T),(H,H,T)\}$
- (c) What is the complement of the event $\{(H,H,H),(H,H,T),(H,T,H),(H,T,T),(T,T,T)\}$?
- (d) Let A be the event that our outcome has 0 heads. Let B be the event that our outcome has exactly 2 heads. What is $A \cup B$?

	(e) What is the probability of the outcome (H,H,T) ?
	(f) What is the probability of the event that our outcome has exactly two heads?
	(g) What is the probability of the event that our outcome has at least one head?
	3 Sampling
Note 13	Suppose you have balls numbered $1,, n$, where n is a positive integer ≥ 2 , inside a coffee mug. You pick a ball uniformly at random, look at the number on the ball, replace the ball back into the coffee mug, and pick another ball uniformly at random.
	(a) What is the probability that the first ball is 1 and the second ball is 2?
	(b) What is the probability that the second ball's number is strictly less than the first ball's number?
	(c) What is the probability that the second ball's number is exactly one greater than the first ball's number?

CS 70, Spring 2025, DIS 8A 3

(d)	Now, assume that after you looked at the first ball, you did <i>not</i> replace the ball in the coffee mug (instead, you threw the ball away), and then you drew a second ball as before. Now, what are the answers to the previous parts?
Į.	Intransitive Dice
	re playing a game with your friend Bob, who has a set of three dice. You'll each choose a different die, t, and whoever had the higher result wins. The dice have sides as follows:
•	Die A has sides 2, 2, 4, 4, 9, and 9.
•	Die B has sides 1, 1, 6, 6, 8, and 8.
•	Die C has sides 3, 3, 5, 5, 7, and 7.
(a)	Suppose you have chosen die A and Bob has chosen die B. What is the probability that you win? <i>Hint: It may be easier to work with a sample space smaller than</i> 6×6 .
(b)	Suppose you have chosen die B and Bob has chosen die C. What is the probability that you win?
(c)	Suppose you have chosen die C and Bob has chosen die A. What is the probability that you win?

Note 13

CS 70, Spring 2025, DIS 8A 4

(d) Bob offers to let you choose your die first so that you can choose the best one. Is this an offer your

should accept? Why or why not?