1 Easter Eggs

You made the trek to Soda for a Spring Break-themed homework party, and every attendee gets to leave with a party favor. You're given a bag with 20 chocolate eggs and 40 (empty) plastic eggs. You pick 5 eggs (uniformly) without replacement.

(a) What is the probability that the first egg you drew was a chocolate egg?

(b) What is the probability that the second egg you drew was a chocolate egg?

(c) Given that the first egg you drew was an empty plastic one, what is the probability that the fifth egg you drew was also an empty plastic egg?
2 Balls and Bins

Suppose you throw \(n \) balls into \(n \) labeled bins one at a time.

(a) What is the probability that the first bin is empty?

(b) What is the probability that the first \(k \) bins are empty?

(c) Let \(A \) be the event that at least \(k \) bins are empty. Let \(m \) be the number of subsets of \(k \) bins out of the total \(n \) bins. If we assume \(A_i \) is the event that the \(i \)th set of \(k \) bins is empty. Then we can write \(A \) as the union of \(A_i \)'s:

\[
A = \bigcup_{i=1}^{m} A_i.
\]

Compute \(m \) in terms of \(n \) and \(k \), and use the union bound to give an upper bound on the probability \(\mathbb{P}[A] \).
(d) What is the probability that the second bin is empty given that the first one is empty?

(e) Are the events that “the first bin is empty” and “the first two bins are empty” independent?

(f) Are the events that “the first bin is empty” and “the second bin is empty” independent?
3 Mario’s Coins

Mario owns three identical-looking coins. One coin shows heads with probability 1/4, another shows heads with probability 1/2, and the last shows heads with probability 3/4.

(a) Mario randomly picks a coin and flips it. He then picks one of the other two coins and flips it. Let X_1 and X_2 be the events of the 1st and 2nd flips showing heads, respectively. Are X_1 and X_2 independent? Please prove your answer.

(b) Mario randomly picks a single coin and flips it twice. Let Y_1 and Y_2 be the events of the 1st and 2nd flips showing heads, respectively. Are Y_1 and Y_2 independent? Please prove your answer.

(c) Mario arranges his three coins in a row. He flips the coin on the left, which shows heads. He then flips the coin in the middle, which shows heads. Finally, he flips the coin on the right. What is the probability that it also shows heads?