
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao DIS 10A

Combinations of Events Intro
Note 14 Product rule: We can find the probability of an intersection of events by enforcing an “ordering”

of these events. Here, each successive conditional probability in the product finds the probability
of the next event, conditioned on all prior events occurring:

P[A1 ∩A2 ∩·· ·∩An] = P[A1]P[A2 | A1]P[A3 | A1 ∩A2] · · ·P[An | A1 ∩A2 ∩·· ·∩An−1].

Note that this is just a generalization of the definition of conditional probability: P[A1 ∩A2] =
P[A1]P[A2 | A1]

Union Bound: Derived from the principle of inclusion-exclusion, the probability that at least one
of the events A1,A2, . . . ,An occurs is at most the sum of the probabilities of the individual events:

P[A1 ∪A2 ∪·· ·∪An]≤ P[A1]+P[A2]+ · · ·+P[An]

P[
n⋃

i=1

Ai]≤
n

∑
i=1

P[Ai]

with equality when the Ai’s are disjoint.

1 Symmetry
Note 11
Note 13

In this problem, we will walk you through the idea of symmetry and its formal justification. Con-
sider an experiment where you have a bag with m red marbles and n−m blue marbles. You draw
marbles from the bag, one at a time without replacement until the bag is empty.

(a) Define the sample space Ω. (No need to write out every element, a brief description is fine).
Is this a uniform probability space?

(b) What is the probability that the first marble you draw is red?

(c) Suppose you’ve drawn all but the final marble, setting each marble aside as you draw it
without looking at it. We want to find the probability that the final marble left in the bag will
be red.

Let A be the event containing outcomes where the first marble is red, and let B be the event
containing outcomes where the final marble is red. Provide a bijective function f : A → B
mapping outcomes in A to outcomes in B, and explain why it is a bijection. Note that there
can be multiple valid bijections.

(d) Use the previous parts to find the probability that the final marble will be red.
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(e) You repeat the experiment. Find the probability that the last two marbles you draw will be
red.

(f) You repeat the experiment again, but this time you see that the first marble you draw is red.
Find the probability that the second-to-last marble you draw will also be red.

Solution:

(a) The sample space is the set of all length n sequences with m reds and n−m blues. This is a
uniform probability space; there are a total of

(n
m

)
outcomes in the sample space, and each

outcome has probability 1
(n

m)
.

(b) Of the n marbles, m are red, giving a probability of m
n .

(c) The inputs to f will be sequences of length n with m red draws and n−m blue draws, and the
output will be the same sequence except with the first and last draws swapped. This uniquely
transforms each sequence of draws with a red marble first into a sequence with a red marble
last, and vice versa ( f is its own inverse).

(d) Since we have a bijection between the events A and B, they have the same number of out-
comes. Additionally, we have a uniform probability space, so P[A] = |A|

|Ω| and P[B] = |B|
|Ω| . But

our bijection showed that |A|= |B|, so P[A] = P[B], which means the probability of drawing
a red marble last is the same as the probability of drawing a red marble first, which is m

n .

Note: We don’t require a uniform probability space in order to apply the idea of symmetry.
The mapping f only needs to map outcomes in A to outcomes in B with the same probability.
Mathematically, we require that for every ω ∈ A, we have P[ω] = P[ f (ω)]. Then we’d have

P[A] = ∑
ω∈A

P[ω] = ∑
ω∈A

P[ f (ω)] = ∑
ω∈B

P[ω] = P[B]

as desired.

(e) By the same logic as before, the probability that the last two marbles are red is the same as
the probability that the first two marbles are red, which is m

n × m−1
n−1 = m(m−1)

n(n−1) . The explicit
bijection swaps the first two marbles with the last two marbles.

(f) After seeing the first marble is red, there are m−1 red marbles left and n−1 total marbles.
By symmetry, the probability that the second-to-last marble will be red is the same as the
probability that the second marble will be red, which is m−1

n−1 .

2 Balls and Bins
Note 14 Suppose you throw b balls into n labeled bins one at a time.

(a) What is the probability that the first bin is empty?

(b) What is the probability that the first k bins are empty?
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(c) Let A be the event that at least k bins are empty. Let m be the number of subsets of k bins out
of the total n bins. If we assume Ai is the event that the ith set of k bins is empty. Then we
can write A as the union of Ai’s:

A =
m⋃

i=1

Ai.

Compute m in terms of n and k, and use the union bound to give an upper bound on the
probability P[A].

(d) What is the probability that the second bin is empty given that the first one is empty?

(e) Are the events that “the first bin is empty” and “the first two bins are empty” independent?

(f) Are the events that “the first bin is empty” and “the second bin is empty” independent?

Solution: Since the balls are thrown one at a time, there is an ordering, and so we are sampling
with replacement where order matters rather than where it doesn’t (which would correspond to
each configuration in the stars and bars setup being equally likely).

(a) Note that this is a uniform sample space, with outcomes representing all possible ways to
throw each ball individually into the bins. Here, |Ω| = nb, as each of the b balls has n
possible bins to fall into, and out of these possibilities, (n− 1)b of them leave the first bin
empty—each ball would then have n− 1 possible bins to fall into. This gives us an overall

probability
(

n−1
n

)b

that the first bin is empty.

Equivalently, we can note that each throw is independent of all of the other throws. Since the
probability that ball i does not land in the first bin is n−1

n , the probability that all of the balls

do not land in the first bin is
(

n−1
n

)b

.

(b) Similar to the previous part, we have the same uniform sample space of size nb. Now, there
are a total of (n− k)b possible ways to throw the balls into bins such that the first k bins are
empty—each ball has n− k possible bins to fall into.

Alternatively, we can similarly make use of independence. Since the probability that ball i
does not land in the first k bins is n−k

n , the probability that all of the balls do not land in the

first k bins is
(

n− k
n

)b

.

(c) We use the union bound. Then

P[A] = P

[
m⋃

i=1

Ai

]
≤

m

∑
i=1

P[Ai].

We know the probability of the first k bins being empty from part (b), and this is true for any
set of k bins, so

P[Ai] =

(
n− k

n

)b

.
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Then,

P[A]≤ m ·
(

n− k
n

)b

=

(
n
k

)(
n− k

n

)b

.

(d) Using Bayes’ Rule:

P[2nd bin empty | 1st bin empty] =
P[2nd bin empty∩1st bin empty]

P[1st bin empty]

=
(n−2)b/nb

(n−1)b/nb

=

(
n−2
n−1

)b

Alternate solution: We know bin 1 is empty, so each ball that we throw can land in one of
the remaining n−1 bins. We want the probability that bin 2 is empty, which means that each
ball cannot land in bin 2 either, leaving n−2 bins. Thus for each ball, the probability that bin
2 is empty given that bin 1 is empty is n−2

n−1 . For b total balls, this probability is
(n−2

n−1

)b
.

(e) They are dependent. Knowing the latter means the former happens with probability 1.

(f) In part (c) we calculated the probability that the second bin is empty given that the first bin is
empty:

(n−2
n−1

)b
. The probability that the second bin is empty (without any prior information)

is
(n−1

n

)b
. Since these probabilities are not equal, the events are dependent.

3 Mario’s Coins
Note 14 Mario owns three identical-looking coins. One coin shows heads with probability 1/4, another

shows heads with probability 1/2, and the last shows heads with probability 3/4.

(a) Mario randomly picks a coin and flips it. He then picks one of the other two coins and flips
it. Let X1 and X2 be the events of the 1st and 2nd flips showing heads, respectively. Are X1
and X2 independent? Please prove your answer.

(b) Mario randomly picks a single coin and flips it twice. Let Y1 and Y2 be the events of the 1st
and 2nd flips showing heads, respectively. Are Y1 and Y2 independent? Please prove your
answer.

(c) Mario arranges his three coins in a row. He flips the coin on the left, which shows heads. He
then flips the coin in the middle, which shows heads. Finally, he flips the coin on the right.
What is the probability that it also shows heads?

Solution:

(a) X1 and X2 are not independent. Intuitively, the fact that X1 happened gives some information
about the first coin that was chosen; this provides some information about the second coin
that was chosen (since the first and second coins can’t be the same coin), which directly
affects whether X2 happens or not.
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To make this formal, we compute

P[X1] =
(1

3

)(1
4

)
+
(1

3

)(1
2

)
+
(1

3

)(3
4

)
=

1
2

By symmetry, P[X2] = P[X1], so

P[X1]P[X2] =
1
4
.

But if we consider the probability that both X1 and X2 happen, we have

P[X1 ∩X2] =
1
6

[(1
4

)(1
2

)
+
(1

4

)(3
4

)
+
(1

2

)(1
4

)
+(1

2

)(3
4

)
+
(3

4

)(1
4

)
+
(3

4

)(1
2

)]
=

22
96

=
11
48

which is not equal to 1/4, violating the definition of independence.

(b) Y1 and Y2 are not independent. Intuitively, the fact that Y1 happens gives some information
about the coin that was picked, which directly influences whether Y2 happens or not.

To make this formal, we compute

P[Y1] =
(1

3

)(1
4

)
+
(1

3

)(1
2

)
+
(1

3

)(3
4

)
=

1
2

By symmetry, P[Y2] = P[Y1], so

P[Y1]P[Y2] =
1
4

But if we consider the probability that both Y1 and Y2 happen, we have

P[Y1 ∩Y2] =
(1

3

)(1
4

)2
+
(1

3

)(1
2

)2
+
(1

3

)(3
4

)2
=

14
48

=
7

24

which is not equal to 1/4, violating the definition of independence.

(c) Let A be the coin with bias 1/4, B be the fair coin, and C be the coin with bias 3/4. There
are six orderings, each with probability 1/6: ABC, ACB, BAC, BCA, CAB, and CBA. Thus

P[Third coin shows heads | First two coins show heads]

=
P[All three coins show heads]
P[First two coins show heads]

=
(1

4)(
1
2)(

3
4)

11/48

=
3/32

11/48
=

9
22

.
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Note that the denominator was the probability calculated in part a, so we just plugged it in as
11
48 .
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