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Random Variables Intro
Note 15
Note 19

Random Variable: A random variable X is a function from Ω → R, mapping the possible out-
comes to real numbers. Note that this function itself is not random; the outcomes are random. We
define

P[X = k] = P[{ω ∈ Ω : X(ω) = k}].

Distribution of a random variable: the set of all (k,P[X = k]), describing the probability of attain-
ing each value of the random variable.

Bernoulli Distribution: X ∼ Bernoulli(p); X represents the outcome of a biased coin flip. X is
oftentimes also called an indicator random variable of an event with probability p. The distribution
is described by the following:

P[X = k] =

{
p if k = 1
1− p if k = 0

Binomial Distribution: X ∼ Binomial(n, p); X represents the number of successes in n indepen-
dent trials, where p is the probability of success in each trial.

Geometric Distribution: X ∼ Geometric(p); X represents the number of independent trials until
the first success (including the success), where p is the probability of success in each trial.

Poisson Distribution: X ∼ Poisson(λ ); X represents the number of occurrences of an event in one
unit of time, if on average there are λ occurrences in one unit of time. The distribution is described
by the following:

P[X = k] =
λ k

k!
e−λ

Further, if X ∼ Poisson(λx) and Y ∼ Poisson(λy) are independent, then X +Y ∼ Poisson(λx+λy).

1 Head Count
Note 15 Consider a coin with P[Heads] = 2/5. Suppose you flip the coin 20 times, and define X to be the

number of heads.

(a) What is P[X = k], for some 0 ≤ k ≤ 20? Express your answer in terms of k. (Do not just
copy down a formula—re-derive it yourself!)

(b) What is the name of the distribution of X , and what are its parameters?
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(c) What is P[X ≥ 1]? Hint: You should be able to do this without a summation.

(d) What is P[12 ≤ X ≤ 14]?

(e) Now consider a second coin also with P[Heads] = 2/5. Suppose you flip this second coin 30
times, and define Y to be the number of heads. What is the distribution of the total number
of heads among these two coins, i.e. what is the distribution of X +Y ?

Solution:

(a) There are a total of
(20

k

)
ways to select k coins to be heads. The probability that the selected

k coins to be heads is (2
5)

k, and the probability that the rest are tails is (3
5)

20−k. Putting this
together, we have

P[X = k] =
(

20
k

)(
2
5

)k(3
5

)20−k

.

(b) Since we have 20 independent trials, with each trial having a probability 2/5 of success, we
can write X ∼ Binomial(20, 2

5).

(c) Note that the probability that there is at least one head is the complement to the probability
that there are zero heads. This means that

P[X ≥ 1] = 1−P[X = 0] = 1−
(

3
5

)20

.

(d) The only way to write out this expression is as a sum of 3 different probabilities:

P[12 ≤ X ≤ 14] = P[X = 12]+P[X = 13]+P[X = 14]

=

(
20
12

)(
2
5

)12(3
5

)8

+

(
20
13

)(
2
5

)13(3
5

)7

+

(
20
14

)(
2
5

)14(3
5

)6

.

(e) Since these two coins have the exact same behavior (i.e. the same bias), we can treat this
as an experiment where we flip just one coin 50 times. Here, this means that X +Y ∼
Binomial(50, 2

5).

Note that more generally, for two independent binomial random variables X ∼Binomial(n1, p)
and Y ∼Binomial(n2, p) with identical success probabilities, we have X+Y ∼Binomial(n1+
n2, p), since we’re essentially just increasing the number of trials we’re considering.

2 Head Count II
Note 19 Consider a coin with P[Heads] = 3/4. Suppose you flip the coin until you see heads for the first

time, and define X to be the number of times you flipped the coin.

(a) What is P[X = k], for some k ≥ 1? Express your answer in terms of k. (Do not just copy
down a formula—re-derive it yourself!)

(b) What is the name of the distribution of X , and what are its parameters?
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(c) What is P[X > k], for some k ≥ 0? (You should not have any summations.)

(d) What is P[X < k], for some k ≥ 1? (You should not have any summations.)

(e) What is P[X > k | X > m], for some k ≥ m ≥ 0? Show that your answer is equal to P[X >

k−m]. Why do we call this the memoryless property?

(f) Suppose X ∼ Geometric(p) and Y ∼ Geometric(q) are independent. Find the distribution of
min(X ,Y ) and justify your answer.

Hint: consider two coins with P[Heads] = p and P[Heads] = q respectively.

Solution:

(a) If we flipped k times, then we had k−1 tails and 1 head, in that order, giving us

P[X = k] =
3
4

(
1− 3

4

)k−1

=
3
4

(
1
4

)k−1

.

(b) X ∼ Geometric(3
4)

(c) If we had to flip more than k times before seeing our first heads, then our first k flips must
have been tails, giving us

P[X > k] =
(

1− 3
4

)k

=

(
1
4

)k

.

You can alternatively write as the sum ∑
∞
i=k+1P[X = i] = ∑

∞
i=k+1

3
4 ∗ (1

4)
i−1 = 3

4 ∗ (1
4)

k ∗
1

1−1/4 = (1
4)

k using the formula for an infinite geometric sum

(d) Notice P[X < k] = 1−P[X ≥ k] = 1−P[X > k−1] since X can only take on integer values.
Along similar lines to the previous part, we then have

P[X < k] = 1−P[X > k−1] = 1−
(

1− 3
4

)k−1

= 1−
(

1
4

)k−1

.

(e) By part (c), we have

P[X > k | X > m] =
P[X > k∩X > m]

P[X > m]
=

P[X > k]
P[X > m]

=

(
1
4

)k−m

.

However, note that this is exactly P[X > k−m]. The reason this makes sense is that if we
want to compute the probability that the first heads occurs after k flips, and we know that the
first heads occurs after m flips, then the first m flips are tails. Thus, by the independence of
the coin flips, the first m flips don’t matter, and so we only need to compute the probability
that the first heads occurs after k −m flips. This is called the memorylessness property
of the geometric distribution because having flipped the coin m times without seeing heads
doesn’t affect the distribution of future flips.
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(f) Let X be the number of coins we flip until we see a heads from flipping a coin with bias p,
and let Y similarly be the number of coins we flip until we see a heads from flipping a coin
with bias q.

Imagine we flip the bias p coin and the bias q coin at the same time. The minimum of the
two random variables represents how many simultaneous flips occur before at least one head
is seen.

The probability of not seeing a head at all on any given simultaneous flip is (1− p)(1− q);
this corresponds to a failure. This means that the probability that there will be a success on
any particular trial is 1−(1− p)(1−q) = p+q− pq. Therefore, min(X ,Y )∼Geometric(p+
q− pq).

Alternative 1: We can also solve this algebraically. The probability that min(X ,Y ) = k for
some positive integer k is the probability that the first k−1 coin flips for both X and Y were
tails, and we get heads on the kth toss (this can come from either X or Y ). Specifically, this
occurs with probability

((1− p)(1−q))k−1 · (p+q− pq)

We recognize this as the formula for a geometric random variable with parameter p+q− pq.

Alternative 2: An alternative, slightly cleaner approach is to work with the tail probabilities
of the geometric distribution, rather than with the usual point probabilities as above. Let
Z = min(X ,Y ). We can work with P[Z ≥ k] rather than with P[Z = k]; clearly the values
P[Z ≥ k] specify the values P[Z = k] since P[Z = k] = P[Z ≥ k]−P[Z ≥ (k+1)], so it suffices
to calculate them instead. We then get the following argument:

P[Z ≥ k] = P[min(X ,Y )≥ k]

= P[(X ≥ k)∩ (Y ≥ k)]

= P[X ≥ k] ·P[Y ≥ k] since X ,Y are independent

= (1− p)k−1(1−q)k−1 since x,Y are geometric

= ((1− p)(1−q))k−1

= (1− p−q+ pq)k−1.

This is the tail probability of a geometric distribution with parameter p+q− pq, thus we can
conclude that Z ∼ Geom(p+q− pq), which is the same result as before!

3 Shuttles and Taxis at Airport
Note 19 In front of terminal 3 at San Francisco Airport is a pickup area where shuttles and taxis arrive

according to a Poisson distribution. The shuttles arrive at a rate λ1 = 1/20 (i.e. 1 shuttle per 20
minutes) and the taxis arrive at a rate λ2 = 1/10 (i.e. 1 taxi per 10 minutes) starting at 00:00. The
shuttles and the taxis arrive independently.

(a) What is the distribution of the following:
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(i) The number of taxis that arrive between times 00:00 and 00:20?

(ii) The number of shuttles that arrive between times 00:00 and 00:20?

(iii) The total number of pickup vehicles that arrive between times 00:00 and 00:20?

(b) What is the probability that exactly 1 shuttle and 3 taxis arrive between times 00:00 and
00:20?

(c) Given that exactly 1 pickup vehicle arrived between times 00:00 and 00:20, what is the
conditional probability that this vehicle was a taxi?

(d) Suppose you reach the pickup area at 00:20. You learn that you missed 3 taxis and 1 shuttle
in those 20 minutes. What is the probability that you need to wait for more than 10 mins until
either a shuttle or a taxi arrives?

Solution:

(a) (i) Let T ([0,20]) denote the number of taxis that arrive between times 00:00 and 00:20.
This interval has length 20 minutes, so the number of taxis T ([0,20]) arriving in this
interval is distributed according to Poisson(λ2 ·20) = Poisson(2), i.e.

P[T ([0,20]) = t] =
2te−2

t!
, for t = 0,1,2, . . . .

(ii) Let S([0,20]) denote the number of shuttles that arrive between times 00:00 and 00:20.
This interval has length 20 minutes, so the number of shuttles S([0,20]) arriving in this
interval is distributed according to Poisson(λ1 ·20) = Poisson(1), i.e.

P[S([0,20]) = s] =
1se−1

s!
, for s = 0,1,2, . . . .

(iii) Let N([0,20]) = S([0,20])+T ([0,20]) denote the total number of pickup vehicles (taxis
and shuttles) arriving between times 00:00 and 00:20. Since the sum of independent
Poisson random variables is Poisson distributed with parameter given by the sum of the
individual parameters, we have N[(0,20)]∼ Poisson(3), i.e.

P[N([0,20]) = n] =
3ne−3

n!
, for n = 0,1,2, . . . .

(b) We have

P[T ([0,20]) = 3] =
23e−2

3!
and P[S([0,20]) = 1] =

11e−1

1!
.

Since the taxis and the shuttles arrive independently, the probability that exactly 3 taxis and
1 shuttle arrive in this interval is given by the product of their individual probabilities, i.e.

23e−2

3!
11e−1

1!
=

4
3

e−3 ≈ 0.0664.
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(c) Let A be the event that exactly 1 taxi arrives between times 00:00 and 00:20. Let B be the
event that exactly 1 vehicle arrives between times 00:00 and 00:20. We have

P[B] =
31e−3

1!
.

Event A∩B is the event that exactly 1 taxi and 0 shuttles arrive between times 00:00 and
00:20. Hence

P[A∩B] =
21e−2

1!
10e−1

0!
.

Thus, we get

P[A|B] = P[A∩B]
P[B]

= 2/3.

(d) The event that you need to wait for more than 10 minutes starting 00:20 is equivalent to the
event that no vehicle arrives between times 00:20 and 00:30. Let N[20,30] denote the number
of vehicles that arrive between times 00:20 and 00:30. This interval has length 10 minutes,
so N[(20,30)] ∼ Poisson((λ1 +λ2) · 10) = Poisson(3/2). Since Poisson arrivals in disjoint
intervals are independent, we have

P[N([20,30]) = 0|T ([0,20]) = 3,S([0,20]) = 1] =P[N([20,30])= 0]∼ 1.50e−1.5

0!
= e−1.5 ≈ 0.2231.
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