CS 70 Discrete Mathematics and Probability Theory Spring 2025 Rao DIS 11B

Variance Intro

Note 16 Variance: denoted by Var(X); measure of how much X deviates from its mean, i.e. its spread.

 $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$

Properties: for random variables X, Y and constant a,

- $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$
- $\operatorname{Var}(X+a) = \operatorname{Var}(X)$
- If X, Y independent, then Var(X + Y) = Var(X) + Var(Y)

Variance of sum of (not necessarily independent) indicator variables: Let $X_1, ..., X_n$ be indicator variables for events $A_1, ..., A_n$, respectively. The variance of the sum $X = X_1 + \cdots + X_n$ can be calculated as:

$$\operatorname{Var}(X) = \mathbb{E}[(X_1 + \dots + X_n)^2] - \mathbb{E}[X_1 + \dots + X_n]^2 = \sum_{i=1}^n \mathbb{E}[X_i^2] + \sum_{i \neq j} \mathbb{E}[X_i X_j] - \left(\sum_{i=1}^n \mathbb{E}[X_i]\right)^2$$

Note that the term $\sum_{i \neq j} \mathbb{E}[X_i X_j]$ is equivalent to $2 \sum_{i < j} \mathbb{E}[X_i X_j]$.

 $\mathbb{E}[X_i^2] = \mathbb{E}[X_i] = \mathbb{P}[A_i]$ since $X_i^2 = X_i$ for indicator variables, and $\mathbb{E}[X_iX_j] = \mathbb{P}[A_i \cap A_j]$.

1 Dice Variance

Note 16 (a) Let X be a random variable representing the outcome of the roll of one fair 6-sided die. What is Var(X)?

(b) Let Z be a random variable representing the average of n rolls of a fair 6-sided die. What is Var(Z)?

2 Elevator Variance

Note 16 A building has n upper floors numbered 1, 2, ..., n, plus a ground floor G. At the ground floor, m people get on the elevator together, and each person gets off at one of the n upper floors uniformly at random and independently of everyone else. What is the *variance* of the number of floors the elevator *does not* stop at?

3 Student Life

Note 19 In an attempt to avoid having to do laundry often, Marcus comes up with a system. Every night, he designates one of his shirts as his dirtiest shirt. In the morning, he randomly picks one of his shirts to wear. If he picked the dirtiest one, he puts it in a dirty pile at the end of the day (a shirt in the dirty pile is not used again until it is cleaned).

When Marcus puts his last shirt into the dirty pile, he finally does his laundry, and again designates one of his shirts as his dirtiest shirt (laundry isn't perfect) before going to bed. This process then repeats.

(a) If Marcus has *n* shirts, what is the expected number of days that transpire between laundry events? Your answer should be a function of *n* involving no summations.

(b) Say he gets even lazier, and instead of organizing his shirts in his dresser every night, he throws his shirts randomly onto one of *n* different locations in his room (one shirt per location), designates one of his shirts as his dirtiest shirt, and one location as the dirtiest location.

In the morning, if he happens to pick the dirtiest shirt, *and* the dirtiest shirt was in the dirtiest location, then he puts the shirt into the dirty pile at the end of the day and does not throw any future shirts into that location and also does not consider it as a candidate for future dirtiest locations (it is too dirty).

What is the expected number of days that transpire between laundry events now? Again, your answer should be a function of n involving no summations.