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Continuous Probability Intro II
Normal (Gaussian) Distribution: X ∼ N(µ,σ2)

The normal distribution occurs frequently in nature, mostly due to the Central Limit Theorem.

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

FX(x) = Φ(x)

Note that there is no closed form expression for the CDF of the normal distribution.

Properties:

• A standard normal distribution is denoted as Z ∼ N(0,1)

• If X ∼ N(µ,σ2), then X−µ

σ
∼ N(0,1)

• Generally, if X ∼ N(µ,σ2), then aX +b ∼ N(aµ +b,a2σ2)

• If X ∼ N(µX ,σ
2
X) and Y ∼ N(µY ,σ

2
Y ) are independent, then

aX +bY ∼ N(aµX +bµY ,a2
σ

2
X +b2

σ
2
Y ).

Central Limit Theorem: Let X1,X2, . . . ,Xn be i.i.d random variables with mean µ and variance
σ2, and let

Sn =
n

∑
i=1

Xi An =
1
n

n

∑
i=1

Xi

Note that

E[An] = µ Var(An) =
σ2

n

The central limit theorem states that as n → ∞, An → N(µ, σ2

n ). Or,

Sn → N(nµ,nσ
2)

An −µ

σ/
√

n
→ N(0,1)

Sn −nµ

σ
√

n
→ N(0,1)

These four equations are all equivalent formations of the same idea, which is that the sample mean
(of i.i.d random variables) will converge to a normal distribution preserving the mean and variance
of the sample mean, as n → ∞ (and the same holds for the sample sum, and shifted/scaled versions
of them).
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1 Interesting Gaussians
Note 21 (a) If X ∼ N(0,σ2

X) and Y ∼ N(0,σ2
Y ) are independent, then what is E

[
(X +Y )k] for any odd

k ∈ N?

(b) Let fµ,σ (x) be the density of a N(µ,σ2) random variable, and let X be distributed accord-
ing to α fµ1,σ1(x)+ (1−α) fµ2,σ2(x) for some α ∈ [0,1]. Compute E[X ] and Var(X). Is X
normally distributed?

Solution:

(a) E
[
(X +Y )k

]
= 0.

Since X and Y are Gaussians, so must Z = X +Y be. Specifically, Z ∼ N(0,σ2
X + σ2

Y ).
Thus, the PDF fZ of Z is still symmetric about the origin; that is, it is an even function, i.e.
fZ(x) = fZ(−x) for any a,b ∈ R. Therefore,

E
[
(X +Y )k

]
= E

[
Zk
]
=
∫

∞

−∞

xk fZ(x) dx

=
∫ 0

−∞

xk fZ(x) dx+
∫

∞

0
xk fZ(x) dx

=
∫

∞

0
(−x)k fZ(−x) dx+

∫
∞

0
xk fZ(x) dx

=−
∫

∞

0
xk fZ(x) dx+

∫
∞

0
xk fZ(x) dx

= 0,

since k is odd.

Note that we could’ve just concluded that
∫

∞

−∞
xk fZ(x) dx = 0 due to the fact that xk fZ(x) is

an odd function (since xk is an odd function for odd k), and the integral from (−a,a) for any
odd function will evalute to 0.

Also note that adding two RVs is NOT equivalent to adding their PDFs. Instead, adding two
RVs is equivalent to convolving their PDFs. As an example, for random variables X +Y = Z,
it is true that fZ(z) =

∫
∞

−∞
fX ,Y (x,z− x)dx.

(b) E[X ] = αµ1+(1−α)µ2, Var(X) = α
(
σ2

1 +µ2
1
)
+(1−α)

(
σ2

2 +µ2
2
)
−(E[X ])2. No, X is not

necessarily normally distributed.

E[X ] := µ =
∫

∞

−∞

x
(
α fµ1,σ1(x)+(1−α) fµ2,σ2(x)

)
dx

= α

∫
∞

−∞

x fµ1,σ1(x) dx+(1−α)
∫

∞

−∞

x fµ2,σ2(x) dx = αµ1 +(1−α)µ2

Var(X) := σ
2 = E

[
X2]−µ

2 = α

∫
∞

−∞

x2 fµ1,σ1(x) dx+(1−α)
∫

∞

−∞

x2 fµ2,σ2(x) dx−µ
2

= α
(
σ

2
1 +µ

2
1
)
+(1−α)

(
σ

2
2 +µ

2
2
)
−µ

2.
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We know that the density of N(µ,σ) has a unique maximum at x = µ; however, if, e.g.
α = 1/2,µ1 =−10,µ2 = 10,σ1 = σ2 = 1, then α fµ1,σ1 +(1−α) fµ2,σ2 has two maxima, and
so cannot be the density of a Gaussian.

Explanation of integrals:
∫

∞

−∞
x fµ1,σ1(x) dx becomes E[X1] for X1 with PDF fµ1,σ1(x), which

is µ1 by definition.∫
∞

−∞
x2 fµ1,σ1(x) dx becomes E

[
X2

1
]

for X1 with PDF fµ1,σ1(x). E
[
X2

1
]
= Var(X1)+E[X1]

2 =

σ2
1 +µ2

1 by definition.

Below are some plots illustrating the difference between a linear combination of Gaussian
densities and a linear combination of Gaussian random variables.

µ1 µ2

fµ1,σ1 fµ2,σ2

µ1 µ2

fµ1,σ1 fµ2,σ2

The left plot depicts α fµ1,σ1(x)+ (1−α) fµ2,σ2(x) in solid green. The right plot depicts the
density of Z = αZ1 +(1−α)Z2 in solid green, where Z1 ∼ N(µ1,σ

2
1 ), and Z2 ∼ N(µ2,σ

2
2 );

in particular, we have that Z ∼ N(αµ1+(1−α)µ2,α
2σ2

1 +(1−α)2σ2
2 ). (For simplicity, we

fix α = 1
2 in the plots.)

2 Binomial Concentration
Note 21 Here, we will prove that the binomial distribution is concentrated about its mean as the number of

trials tends to ∞. Suppose we have i.i.d. trials, each with a probability of success 1/2. Let Sn be
the number of successes in the first n trials (n is a positive integer).

(a) Compute the mean and variance of Sn.

(b) How should we define Zn in terms of Sn to ensure that Zn has mean 0 and variance 1?

(c) What is the distribution of Zn as n → ∞?

(d) Use the bound P[Z > z]≤ (
√

2πz)−1e−z2/2 when Z is a standard normal in order to approxi-
mately bound P[Sn/n > 1/2+δ ], where δ > 0.

Solution:

(a) Since Sn ∼ Binomial(n, 1
2), we have E[Sn] =

n
2 and Var(Sn) =

n
4 .

(b) We can define

Zn :=
Sn −E[Sn]√

Var(Sn)
=

Sn −n/2√
n/2

.

In particular, we subtract the mean and divide by the standard deviation to normalize Sn.
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To check, we have

E[Zn] =
1√
n/2

E
[
Sn −

n
2

]
=

1√
n/2

(
E[Sn]−

n
2

)
= 0,

Var(Zn) =
1

n/4
Var
(

Sn −
n
2

)
=

1
n/4

Var(Sn) = 1,

since Sn ∼ Binomial(n,1/2).

(c) The central limit theorem tells us that Zn → N (0,1).

(d) In order to apply the bound, we must apply it to Zn.

P
[

Sn

n
>

1
2
+δ

]
= P

[
Sn −n/2

n
> δ

]
= P

[
Sn −n/2√

n/2
> 2δ

√
n
]
≈ P[Zn > 2δ

√
n]

≤ 1
23/2δ

√
πn

e−2δ 2n

3 Erasures, Bounds, and Probabilities
Note 21 Alice is sending 1000 bits to Bob. The probability that a bit gets erased is p, and the erasure of

each bit is independent of the others.

Alice is using a scheme that can tolerate up to one-fifth of the bits being erased. That is, as long as
Bob receives at least 801 of the 1000 bits correctly, he can decode Alice’s message.

In other words, Bob becomes unable to decode Alice’s message only if 200 or more bits are erased.
We call this a “communication breakdown”, and we want the probability of a communication
breakdown to be at most 10−6.

(a) Use Chebyshev’s inequality to upper bound p such that the probability of a communications
breakdown is at most 10−6.

(b) As the CLT would suggest, approximate the fraction of erasures by a Gaussian random vari-
able (with suitable mean and variance). Use this to find an approximate bound for p such
that the probability of a communications breakdown is at most 10−6.

You may use that Φ−1(1−10−6)≈ 4.753.

Solution:

(a) Let X be the random variable denoting the number of erasures. Chebyshev’s inequality states
the following:

P[|X −µX | ≥ k]≤ σ2
X

k2 .
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This gives us the bound

P[X ≥ 200] = P[X −µX ≥ 200−µX ]

≤ P[|X −µX | ≥ 200−µX ]

≤ σ2
X

(200−µX)2

Since X ∼ Binomial(1000, p), we have µX = 1000p and σ2
X = 1000p(1− p). Substituting

these values in, we have

P[X ≥ 200]≤ 1000p(1− p)
(200−1000p)2 =

p(1− p)
40(1−5p)2 .

To meet our objective, we just have to ensure that

P[X ≥ 200]≤ p(1− p)
40(1−5p)2 ≤ 10−6,

which yields an upper bound of about 3.998×10−5 for p.

(b) Let Y be equal to the fraction of erasures, i.e. X
1000 . Using properties of expectation and

variance, we can see that

E[Y ] = p

Var(Y ) = Var(X) · 1
10002 =

p(1− p)
1000

Therefore, by Central Limit Theorem, we can say that Y is roughly a normal distribution with
that mean and variance. Since we are interested in the event that Y ≥ 0.2, let’s figure out how
many standard deviations above the mean 0.2 is:

0.2− p√
p(1−p)

1000

=
(0.2− p)

√
1000√

p(1− p)
.

Therefore, the probability that we get a failure should be approximately (by CLT),

1−Φ

(
(0.2− p)

√
1000√

p(1− p)

)
where Φ is the CDF of a standard normal variable. Setting this to be at most 10−6 gives us

Φ

(
(0.2− p)

√
1000√

p(1− p)

)
≥ 1−10−6

And, since Φ−1(1−10−6)≈ 4.753, we solve the inequality

(0.2− p)
√

1000√
p(1− p)

≥ 4.753
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This yields that we need p ≤ 0.1468.

Note that this gives quite a different value from the previous parts. This is because the
Central Limit Theorem gives a much tighter approximation for tail events than Markov’s and
Chebyshev’s. However, we can only apply the Central Limit Theorem because n is large.

Therefore, we do not need p to be so low to achieve a communication breakdown probability
of 10−6. The other bounds required us to need a probability of on the order of 10−5, but
here we realize that we only need it to be less than 0.1468. (The true bound is .1459.) Quite
drastic!
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